Architecture and Evolution of the Crust during Continental Arc Magmatism


Book Description

"Originally prepared for the GSA Thompson Field Forum that ran from Terrace to Prince Rupert, British Columbia, this guide describes the geology along the Skeena River transect of the Coast Mountains batholith, the largest Cordilleran batholith of western North America and one of the largest continental-margin batholiths in the world. The last guide to this area was published in 1983 and this new volume is the only modern overview of the last decades of work. The authors use the transect as a basis to examine the growth of the Coast Mountains batholith as a whole, emphasizing commonalities and variations with the batholith and how these traits may reflect magmatic processes that create convergent-margin batholiths."--Provided by publisher.







Tectonic Growth of a Collisional Continental Margin


Book Description

"The convergent margin of southern Alaska is considered one of the type areas for understanding the growth of continental margins through collisional tectonic processes. Collisional processes that formed this margin were responsible for multiple episodes of sedimentary basin development, subduction complex growth, magmatism, and deformation. Two main collisional episodes shaped this Mesozoic-Cenozoic continental margin. The first event was the Mesozoic collision of the allochthonous Wrangellia composite terrane. This event represents the largest addition of juvenile crust to western North America in the past 100 m.y. The second event is the ongoing collision of the Yakutat terrane along the southeastern margin of Alaska. This Cenozoic event has produced the highest coast mountain range on Earth (Saint Elias Mountains), the Wrangell continental arc, and sedimentary basins throughout southern Alaska. Active collisional processes continue to shape the southern margin of Alaska, mainly through crustal shortening and strike-slip deformation, large-magnitude earthquakes, and rapid uplift and exhumation of mountain belts and high sedimentation rates in adjacent sedimentary basins. This volume contains 24 articles that integrate new geophysical and geologic data, including many field-based studies, to better link the sedimentary, structural, geochemical, and magmatic processes that are important for understanding the development of collisional continental margins."--Publisher's website.







From the Puget Lowland to East of the Cascade Range


Book Description

"This volume contains guides that geographically focus on the Seattle, Washington, area within the Puget lowland, and also includes descriptions of trips in the Cascade Range and the region east of the Cascades"--










Abstracts of Papers


Book Description




The Tectonic Setting and Origin of Cretaceous Batholiths within the North American Cordillera


Book Description

In this Special Paper, Hildebrand and Whalen present a big-picture, paradigm-busting synthesis that examines the tectonic setting, temporal relations, and geochemistry of many plutons within Cretaceous batholithic terranes of the North American Cordillera. In addition to their compelling tectonic synthesis, they argue that most of the batholiths are not products of arc magmatism as commonly believed, but instead were formed by slab failure during and after collision. They show that slab window and Precambrian TTG suites share many geochemical similarities with Cretaceous slab failure rocks. Geochemical and isotopic data indicate that the slab failure magmas were derived dominantly from the mantle and thus have been one of the largest contributors to growth of continental crust. The authors also note that slab failure plutons emplaced into the epizone are commonly associated with Cu-Au porphyries, as well as Li-Cs-Ta pegmatites.




Geology of the Prince Rupert-Skeena Map Area, British Columbia


Book Description

The purpose of this study is to contribute to the geological framework of the Western Cordillera and especially to contribute to the Coast Mountains Project by providing control information on the natural cross-section afforded by the valley of the Skeena River. A key goal of this project has been to seek field evidence that could contribute to a better understanding of the origin and evolution of the plutonic rocks.