Quantum Mechanics


Book Description

This book presents an accessible treatment of non-relativistic and relativistic quantum mechanics. It is an ideal textbook for undergraduate and graduate physics students, and is also useful to researchers in theoretical physics, quantum mechanics, condensed matter, mathematical physics, quantum chemistry, and electronics. This student-friendly and self-contained textbook covers the typical topics in a core undergraduate program, as well as more advanced, graduate-level topics with an elegant mathematical rigor, contemporary style, and rejuvenated approach. It balances theory and worked examples, which reinforces readers' understanding of fundamental concepts. The analytical methods employed in this book describe physical situations with mathematical rigor and in-depth clarity, emphasizing the essential understanding of the subject matter without need for prior knowledge of classical mechanics, electromagnetic theory, atomic structure, or differential equations. Key Features: • Remains accessible but incorporates a rigorous, updated mathematical treatment • Laid out in a student-friendly structure • Balances theory with its application through examples Lukong Cornelius Fai is a professor of theoretical physics at the Department of Physics, Faculty of Sciences, University of Dschang, Cameroon. He is Head of Condensed Matter and Nanomaterials as well as the Mesoscopic and Multilayer Structures Laboratory. He was formerly a senior associate at the Abdus Salam International Centre for Theoretical Physics (ICTP), Italy. He holds a Master of Science in Physics and Mathematics (1991) as well as a Doctor of Science in Physics and Mathematics (1997) from Moldova State University. He is the author of over 170 scientific publications and five textbooks.







Non-relativistic Quantum Theory: Dynamics, Symmetry And Geometry


Book Description

This textbook is mainly for physics students at the advanced undergraduate and beginning graduate levels, especially those with a theoretical inclination. Its chief purpose is to give a systematic introduction to the main ingredients of the fundamentals of quantum theory, with special emphasis on those aspects of group theory (spacetime and permutational symmetries and group representations) and differential geometry (geometrical phases, topological quantum numbers, and Chern-Simons Theory) that are relevant in modern developments of the subject. It will provide students with an overview of key elements of the theory, as well as a solid preparation in calculational techniques.




Non-Relativistic Quantum Mechanics


Book Description

"Introduces readers to non-relativistic quantum mechanics and its mathematical methods"--




Quantum Mechanics


Book Description

Quantum Mechanics, Third Edition: Non-relativistic Theory is devoted to non-relativistic quantum mechanics. The theory of the addition of angular momenta, collision theory, and the theory of symmetry are examined, together with spin, nuclear structure, motion in a magnetic field, and diatomic and polyatomic molecules. This book is comprised of 18 chapters and begins with an introduction to the basic concepts of quantum mechanics, with emphasis on the uncertainty principle, the principle of superposition, and operators, as well as the continuous spectrum and the wave function. The following chapters explore energy and momentum; Schrödinger's equation; angular momentum; and motion in a centrally symmetric field and in a magnetic field. Perturbation theory, spin, and the properties of quasi-classical systems are also considered. The remaining chapters deal with the identity of particles, atoms, and diatomic and polyatomic molecules. The final two chapters describe elastic and inelastic collisions. This monograph will be a valuable source of information for physicists.




Non-relativistic Quantum Theory


Book Description

This textbook is mainly for physics students at the advanced undergraduate and beginning graduate levels, especially those with a theoretical inclination. Its chief purpose is to give a systematic introduction to the main ingredients of the fundamentals of quantum theory, with special emphasis on those aspects of group theory (spacetime and permutational symmetries and group representations) and differential geometry (geometrical phases, topological quantum numbers, and Chern-Simons Theory) that are relevant in modern developments of the subject. It will provide students with an overview of key elements of the theory, as well as a solid preparation in calculational techniques.




Relativistic Quantum Mechanics. Wave Equations


Book Description

Relativistic Quantum Mechanics. Wave Equations concentrates mainly on the wave equations for spin-0 and spin-1/2 particles. Chapter 1 deals with the Klein-Gordon equation and its properties and applications. The chapters that follow introduce the Dirac equation, investigate its covariance properties and present various approaches to obtaining solutions. Numerous applications are discussed in detail, including the two-center Dirac equation, hole theory, CPT symmetry, Klein's paradox, and relativistic symmetry principles. Chapter 15 presents the relativistic wave equations for higher spin (Proca, Rarita-Schwinger, and Bargmann-Wigner). The extensive presentation of the mathematical tools and the 62 worked examples and problems make this a unique text for an advanced quantum mechanics course. This third edition has been slightly revised to bring the text up-to-date.




Relativistic Quantum Mechanics


Book Description

In this book, quantum mechanics is developed from the outset on a relativistic basis, using the superposition principle, Lorentz invariance and gauge invariance. Nonrelativistic quantum mechanics appears as a special case, and classical relativistic mechanics as another one. These special cases are important for giving plausible names to operators, for example "orbital angular momentum", "spin" or "magnetic moment". A subject which is treated for the first time in this book is the theory of binaries in terms of differential equations which have the mathematical structure of the corresponding one-body equations (Klein--Gordon for two spin- less particles, Dirac for two spinor particles).




Relativistic Quantum Mechanics


Book Description

Written by two of the most prominent leaders in particle physics, Relativistic Quantum Mechanics: An Introduction to Relativistic Quantum Fields provides a classroom-tested introduction to the formal and conceptual foundations of quantum field theory. Designed for advanced undergraduate- and graduate-level physics students, the text only requires p




Relativistic Quantum Mechanics


Book Description

* Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation? * To what extent can these problems be overcome? * What is the physical necessity of quantum field theories? In many textbooks, only insufficient answers to these fundamental questions are provided by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this book emphasizes particularly this point of view (relativistic quantum mechanics in the ''narrow sense''): it extensively discusses the relativistic one-particle view and reveals its problems and limitations, therefore illustrating the necessity of quantized fields in a physically comprehensible way. The first two chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always with a view to the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the Feynman rules from propagator techniques. This is where the indispensability of quantum field theory reasoning becomes apparent and basic quantum field theory concepts are introduced. This textbook addresses undergraduate and graduate Physics students who are interested in a clearly arranged and structured presentation of relativistic quantum mechanics in the "narrow sense" and its connection to quantum field theories. Each section contains a short summary and exercises with solutions. A mathematical appendix rounds out this excellent textbook on relativistic quantum mechanics.