Relativistic Theory of Atoms and Molecules III


Book Description

Relativistic effects are of major importance for understanding the properties of heavier atoms and molecules. Volumes I-III of Relativistic Theory of Atoms and Molecules constitute the only available bibliography on related calculations. In Volume III, 3792 new references covering 1993-1999 are added to the database. The material is characterized by an analysis of the respective papers. The volume gives the user a comprehensive bibliography on relativistic atomic and molecular calculations, including studies on the Dirac equation and related solid-state work.




Relativistic Quantum Theory of Atoms and Molecules


Book Description

This book is intended for physicists and chemists who need to understand the theory of atomic and molecular structure and processes, and who wish to apply the theory to practical problems. As far as practicable, the book provides a self-contained account of the theory of relativistic atomic and molecular structure, based on the accepted formalism of bound-state Quantum Electrodynamics. The author was elected a Fellow of the Royal Society of London in 1992.




Relativistic Theory of Atoms and Molecules II


Book Description

Relativistic effects are of major importance for understan- ding the properties of heavier atoms and molecules. This book is still the only comprehensive bibliography on related calculations. The material is organized by subject into ta- bles containing a concise characterization. Together with Volume I (Lecture Notes in Chemistry Vol. 41, ISBN 3-540-17167-3) the literature until 1992 is now covered and 6577 references, with titles, are given in the two books. The book will provide aconvenient reference for theoretical chemists and atomic and molecular physicists interested in the properties of heavier elements. Contents: Introduction - One-particle problems - Quantum electrodynamical effects - Multielectron atoms: methods - Multielectron atoms: results - Symmetry - Molecular calcula- tions - Solid-state theory - Relativistic effects and heavy- element chemistry - Corrections to Volume I - Some comments on notations and terminology - List of acronyms and symbols - Bibliography.




The Effects of Relativity in Atoms, Molecules, and the Solid State


Book Description

Recent years have seen a growing interest in the effects of relativity in atoms, molecules and solids. On the one hand, this can be seen as result of the growing awareness of the importance of relativity in describing the properties of heavy atoms and systems containing them. This has been fueled by the inadequacy of physical models which either neglect relativity or which treat it as a small perturbation. On the other hand, it is dependent upon the technological developments which have resulted in computers powerful enough to make calculations on heavy atoms and on systems containing heavy atoms meaningful. Vector processing and, more recently, parallel processing techniques are playing an increasingly vital role in rendering the algorithms which arise in relativistic studies tractable. This has been exemplified in atomic structure theory, where the dominant role of the central nuclear charge simplifies the problem enough to permit some prediction to be made with high precision, especially for the highly ionized atoms of importance in plasma physics and in laser confinement studies. Today's sophisticated physical models of the atom derived from quantum electrodynamics would be intractable without recourse to modern computational machinery. Relativistic atomic structure calculations have a history dating from the early attempts of Swirles in the mid 1930's but continue to provide one of the primary test beds of modern theoretical physics.







Relativistic Quantum Chemistry


Book Description

Written by two researchers in the field, this book is a reference to explain the principles and fundamentals in a self-contained, complete and consistent way. Much attention is paid to the didactical value, with the chapters interconnected and based on each other. From the contents: * Fundamentals * Relativistic Theory of a Free Electron: Diracï¿1⁄2s Equation * Dirac Theory of a Single Electron in a Central Potential * Many-Electron Theory I: Quantum Electrodynamics * Many-Electron Theory II: Dirac-Hartree-Fock Theory * Elimination of the Small Component * Unitary Transformation Schemes * Relativistic Density Functional Theory * Physical Observables and Molecular Properties * Interpretive Approach to Relativistic Quantum Chemistry From beginning to end, the authors deduce all the concepts and rules, such that readers are able to understand the fundamentals and principles behind the theory. Essential reading for theoretical chemists and physicists.







Atoms and Molecules


Book Description

Atoms and Molecules describes the basic properties of atoms and molecules in terms of group theoretical methods in atomic and molecular physics. The book reviews mathematical concepts related to angular momentum properties, finite and continuous rotation groups, tensor operators, the Wigner-Eckart theorem, vector fields, and vector spherical harmonics. The text also explains quantum mechanics, including symmetry considerations, second quantization, density matrices, time-dependent, and time-independent approximation methods. The book explains atomic structure, particularly the Dirac equation in which its nonrelativistic approximation provides the basis for the derivation of the Hamiltonians for all important interactions, such as spin-orbit, external fields, hyperfine. Along with multielectron atoms, the text discusses multiplet theory, the Hartree-Fock formulation, as well as the electromagnetic radiation fields, their interactions with atoms in first and higher orders. The book explores molecules and complexes, including the Born-Oppenheimer approximation, molecular orbitals, the self-consistent field method, electronic states, vibrational and rotational states, molecular spectra, and the ligand field theory. The book can prove useful for graduate or advanced students and academicians in the field of general and applied physics.




The Stability of Matter: From Atoms to Stars


Book Description

The first edition of "The Stability of Matter: From Atoms to Stars" was sold out after a time unusually short for a selecta collection and we thought it ap propriate not just to make a reprinting but to include eight new contributionso They demonstrate that this field is still lively and keeps revealing unexpected featureso Of course, we restricted ourselves to developments in which Elliott Lieb participated and thus the heroic struggle in Thomas-Fermi theory where 7 3 5 3 the accuracy has been pushed from Z 1 to Z 1 is not includedo A rich landscape opened up after Jakob Yngvason's observation that atoms in magnetic fields also are described in suitable limits by a Thomas-Fermi-type theoryo Together with Elliott Lieb and Jan Philip Solovej it was eventually worked out that one has to distinguish 5 regionso If one takes as a dimensionless measure of the magnetic field strength B the ratio Larmor radius/Bohr radius one can compare it with N "' Z and for each of the domains 4 3 (i) B « N 1 , 4 3 (ii) B "' N 1 , 4 3 3 (iii) N 1« B « N , 3 (iv) B "' N , 3 (v) B » N a different version ofmagnetic Thomas-Fermi theory becomes exact in the limit N --+ ooo In two dimensions and a confining potential ("quantum dots") the situation is somewhat simpler, one has to distinguish only (i) B « N, (ii) B "'N,




Introduction to Relativistic Quantum Chemistry


Book Description

This book provides an introduction to the essentials of relativistic effects in quantum chemistry, and a reference work that collects all the major developments in this field. It is designed for the graduate student and the computational chemist with a good background in nonrelativistic theory. In addition to explaining the necessary theory in detail, at a level that the non-expert and the student should readily be able to follow, the book discusses the implementation of the theory and practicalities of its use in calculations. After a brief introduction to classical relativity and electromagnetism, the Dirac equation is presented, and its symmetry, atomic solutions, and interpretation are explored. Four-component molecular methods are then developed: self-consistent field theory and the use of basis sets, double-group and time-reversal symmetry, correlation methods, molecular properties, and an overview of relativistic density functional theory. The emphases in this section are on the basics of relativistic theory and how relativistic theory differs from nonrelativistic theory. Approximate methods are treated next, starting with spin separation in the Dirac equation, and proceeding to the Foldy-Wouthuysen, Douglas-Kroll, and related transformations, Breit-Pauli and direct perturbation theory, regular approximations, matrix approximations, and pseudopotential and model potential methods. For each of these approximations, one-electron operators and many-electron methods are developed, spin-free and spin-orbit operators are presented, and the calculation of electric and magnetic properties is discussed. The treatment of spin-orbit effects with correlation rounds off the presentation of approximate methods. The book concludes with a discussion of the qualitative changes in the picture of structure and bonding that arise from the inclusion of relativity.