Thermal Plasmas


Book Description

In this unique textbook and reference source, the authors integrate theoretical and applied research from a host of disciplines, including materials science, plasma physics, and advanced transport phenomena. Volume 1, the first of two, covers the fundamentals of plasma physics and gaseous electronics, thermodynamics, and transport properties of plasma.




Plasma Scattering of Electromagnetic Radiation


Book Description

This work presents one of the most powerful methods of plasma diagnosis in exquisite detail, to guide researchers in the theory and measurement techniques of light scattering in plasmas. Light scattering in plasmas is essential in the research and development of fusion energy, environmental solutions, and electronics. Referred to as the "Bible" by researchers, the work encompasses fusion and industrial applications essential in plasma research. It is the only comprehensive resource specific to the plasma scattering technique. It provides a wide-range of experimental examples and discussion of their principles with worked examples to assist researchers in applying the theory. Computing techniques for solving basic equations helps researchers compare data to the actual experiment New material on advances on the experimental side, such as the application of high density plasmas of inertial fusion Worked out examples of the scattering technique for easier comprehension of theory




Particle Interactions in High-Temperature Plasmas


Book Description

This thesis makes two important contributions to plasma physics. The first is the extension of the seminal theoretical works of Spitzer and Braginskii, which describe the basics of particle interactions in plasma, to relativistic systems. Relativistic plasmas have long been studied in high-energy astrophysics and are becoming increasingly attainable in the laboratory. The second is the design of a new class of photon–photon collider, which is the first capable of detecting the Breit–Wheeler process. Though it offers the simplest way for light to be converted into matter, the process has never been detected in the 80 years since its theoretical prediction. The experimental scheme proposed here exploits the radiation used in inertial confinement fusion experiments and could in principle be implemented in one of several current-generation facilities.










Relativistic Kinetic Theory


Book Description

Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neutrino emission during the gravitational collapse.




Fluid Description of Relativistic, Magnetized Plasmas with Anisotropy and Heat Flow


Book Description

Many astrophysical plasmas and some laboratory plasmas are relativistic: either the thermal speed or the local bulk flow in some frame approaches the speed of light. Often, such plasmas are magnetized in the sense that the Larmor radius is smaller than any gradient scale length of interest. Conventionally, relativistic MHD is employed to treat relativistic, magnetized plasmas; however, MHD requires the collision time to be shorter than any other time scale in the system. Thus, MHD employs the thermodynamic equilibrium form of the stress tensor, neglecting pressure anisotropy and heat flow parallel to the magnetic field. We re-examine the closure question and find a more complete theory, which yields a more physical and self-consistent closure. Beginning with exact moments of the kinetic equation, we derive a closed set of Lorentz-covariant fluid equations for a magnetized plasma allowing for pressure and heat flow anisotropy. Basic predictions of the model, including its thermodynamics and the dispersion relation's dependence upon relativistic temperature, are examined. Further, the model is applied to two extant astrophysical problems.




High Temperature Plasmas


Book Description

Filling the gap for a treatment of the subject as an advanced course in theoretical physics with a huge potential for future applications, this monograph discusses aspects of these applications and provides theoretical methods and tools for their investigation. Throughout this coherent and up-to-date work the main emphasis is on classical plasmas at high-temperatures, drawing on the experienced author's specialist background. As such, it covers the key areas of magnetic fusion plasma, laser-plasma-interaction and astrophysical plasmas, while also including nonlinear waves and phenomena. For master and PhD students as well as researchers interested in the theoretical foundations of plasma models.