The Performance of Photovoltaic (PV) Systems


Book Description

The Performance of Photovoltaic (PV) Systems: Modelling, Measurement and Assessment explores the system lifetime of a PV system and the energy output of the system over that lifetime. The book concentrates on the prediction, measurement, and assessment of the performance of PV systems, allowing the reader to obtain a thorough understanding of the performance issues and progress that has been made in optimizing system performance. - Provides unique insights into the performance of photovoltaic systems - Includes comprehensive and systematic coverage of a fascinating area in energy - Written by an expert team of authors and a respected editor







Photovoltaic Module Reliability


Book Description

Provides practical guidance on the latest quality assurance and accelerated stress test methods for improved long-term performance prediction of PV modules This book has been written from a historical perspective to guide readers through how the PV industry learned what the failure and degradation modes of PV modules were, how accelerated tests were developed to cause the same failures and degradations in the laboratory, and then how these tests were used as tools to guide the design and fabrication of reliable and long-life modules. Photovoltaic Module Reliability starts with a brief history of photovoltaics, discussing some of the different types of materials and devices used for commercial solar cells. It then goes on to offer chapters on: Module Failure Modes; Development of Accelerated Stress Tests; Qualification Testing; and Failure Analysis Tools. Next, it examines the use of quality management systems to manufacture PV modules. Subsequent chapters cover the PVQAT Effort; the Conformity Assessment and IECRE; and Predicting PV Module Service Life. The book finishes with a look at what the future holds for PV. A comprehensive treatment of current photovoltaic (PV) technology reliability and necessary improvement to become a significant part of the electric utility supply system Well documented with experimental and practical cases throughout, enhancing relevance to both scientific community and industry Timely contribution to the harmonization of methodological aspects of PV reliability evaluation with test procedures implemented to certify PV module quality Written by a leading international authority in PV module reliability Photovoltaic Module Reliability is an excellent book for anyone interested in PV module reliability, including those working directly on PV module and system reliability and preparing to purchase modules for deployment.




The Universal Generating Function in Reliability Analysis and Optimization


Book Description

Many real systems are composed of multi-state components with different performance levels and several failure modes. These affect the whole system's performance. Most books on reliability theory cover binary models that allow a system only to function perfectly or fail completely. "The Universal Generating Function in Reliability Analysis and Optimization" is the first book that gives a comprehensive description of the universal generating function technique and its applications in binary and multi-state system reliability analysis. Features: - an introduction to basic tools of multi-state system reliability and optimization; - applications of the universal generating function in widely used multi-state systems; - examples of the adaptation of the universal generating function to different systems in mechanical, industrial and software engineering. This monograph will be of value to anyone interested in system reliability, performance analysis and optimization in industrial, electrical and nuclear engineering.




PV System Design and Performance


Book Description

Photovoltaic solar energy technology (PV) has been developing rapidly in the past decades, leading to a multi-billion-dollar global market. It is of paramount importance that PV systems function properly, which requires the generation of expected energy both for small-scale systems that consist of a few solar modules and for very large-scale systems containing millions of modules. This book increases the understanding of the issues relevant to PV system design and correlated performance; moreover, it contains research from scholars across the globe in the fields of data analysis and data mapping for the optimal performance of PV systems, faults analysis, various causes for energy loss, and design and integration issues. The chapters in this book demonstrate the importance of designing and properly monitoring photovoltaic systems in the field in order to ensure continued good performance.




Photovoltaic (PV) System Delivery as Reliable Energy Infrastructure


Book Description

PHOTOVOLTAIC (PV) SYSTEM DELIVERY AS RELIABLE ENERGY INFRASTRUCTURE A practical guide to improving photovoltaic power plant lifecycle performance and output Photovoltaic (PV) System Delivery as Reliable Energy Infrastructure introduces a Preemptive Analytical Maintenance (PAM) for photovoltaic systems engineering, and the RepoweringTM planning approach, as a structured integrated system delivery process. A team of veteran photovoltaics professionals delivers a robust discussion of the lessons learned from mature industries—including PV, aerospace, utilities, rail, marine, and automotive—as applied to the photovoltaic industry. The book offers real-world “technical and fiscal” examples of the impact of photovoltaics to all stakeholders during the concept, specification, operations, maintenance, and RepoweringTM phases. In each chapter, readers will learn to develop RAMS specifications, reliability data collection, and tasks while becoming familiar with the inherent benefits of how these affect the cost of design and development, maintenance, spares, and systems operation. The authors also explain when and how to consider and implement RepoweringTM, plant upgrades and the considerations from concept through retirement and disposal of the plant. Readers will also find: A thorough introduction to Preemptive Analytical Maintenance (PAM), including systems engineering, lifecycle planning, risk management, risk assessment, risk reduction, as compared to the historic utility models, An in-depth treatment of the modern photovoltaic industry, including economic factors and the present endlessly evolving state of technology, Constructive discussions and application of systems engineering, including RAMS and System Engineering practices and solutions, Extensive explorations and application of data collection, curation, and analysis for PV systems, including advanced sensor technologies. Perfect for all new through to experienced photovoltaic design and specification engineers, photovoltaic plant owners, operators, PV asset managers and all interested stakeholders. Photovoltaic (PV) System Delivery as Reliable Energy Infrastructure will also earn a place in the libraries of utilities, engineering, procurements, construction professionals and students.




Performance Analysis of Photovoltaic Systems with Energy Storage Systems


Book Description

This book discusses dynamic modeling, simulation, and control strategies for Photovoltaic (PV) stand-alone systems during variation of environmental conditions. Moreover, the effectiveness of the implemented Maximum Power Point Tracking (MPPT) techniques and the employed control strategy are evaluated during variations of solar irradiance and cell temperature. The simulation results are based on the reliability of the MPPT techniques applied in extracting the maximum power from the PV system during the rapid variation of the environmental conditions. The authors review two MPPT techniques implemented in PV systems, namely the perturb and observe (P&O) MPPT Technique and the Incremental Conductance (InCond) MPPT technique. These two MPPT techniques were simulated by the MATLAB/Simulink and the results response of the PV array from voltage, current, and power are compared to the effect of solar irradiation and temperature change.




Solar Photovoltaic System Applications


Book Description

Presenting a complete guide for the planning, design and implementation of solar PV systems for off-grid applications, this book features analysis based on the authors’ own laboratory testing as well as their in the field experiences. Incorporating the latest developments in smart-digital and control technologies into the design criteria of the PV system, this book will also focus on how to integrate newer smart design approaches and techniques for improving the efficiency, reliability and flexibility of the entire system. The design and implementation of India’s first-of its-kind Smart Mini-Grid system (SMG) at TERI premises, which involves the integration of multiple renewable energy resources (including solar PV) through smart controllers for managing the load intelligently and effectively is presented as a key case study. Maximizing reader insights into the performance of different components of solar PV systems under different operating conditions, the book will be of interest to graduate students, researchers, PV designers, planners, and practitioners working in the area of solar PV design, implementation and assessment.




Reliability and Ecological Aspects of Photovoltaic Modules


Book Description

Photovoltaic (PV) solar energy is expected to be the world's largest source of electricity in the future. To enhance the long-term reliability of PV modules, a thorough understanding of failure mechanisms is of vital importance. In addition, it is important to address the potential downsides to this technology. These include the hazardous chemicals needed for manufacturing solar cells, especially for thin-film technologies, and the large number of PV modules disposed of at the end of their lifecycles. This book discusses the reliability and environmental aspects of PV modules.




Photovoltaic System Design


Book Description

Introducing a Reliable Green Technology That Can Help Improve System Performance Solely centered on photovoltaic (PV) system sizing and the tools used for PV system analysis and design, Photovoltaic System Design: Procedures, Tools and Applications emphasizes the importance of using solar PV technologies for a number of end-use applications, and examines growing interest in solar PV-based projects on a global scale. Written for the system designer/project developer/manufacturer dedicated to correctly sizing a PV system, the book outlines various aspects of PV technology, applications, and programs. It describes key attributes, system design requirements, influence on climatic and site-specific parameters, utilization of simulation procedures, and expected performance. The author includes actual case studies for system designing procedures adopted by various companies and provides a framework for working through both direct and indirect variables under the actual system designing phase. A vital resource essential to your collection, this book: Touches upon the role of renewable energy technologies in a holistic energy scenario Makes a clear categorization of off-grid and on-grid PV applications and discusses advantages and limitations Considers the potential of solar radiation availability Introduces PV system sizing procedures via the modern use of simulation softwares Presents an analysis of actual PV power plant sites when designed via the use of simulation software Determines the weak links in a PV system Brings out the importance of capacity building initiatives vis-à-vis the available range of PV simulation software, tools, and procedures Photovoltaic System Design: Procedures, Tools and Applications provides a clear understanding of the issues that can affect the operation and smooth running of PV facilities and aids in determining photovoltaic system sizing procedures from a variety of end-use considerations. The book encompasses civil, mechanical, electrical, geotechnical, and power systems engineering and is useful to industry professionals involved in solar power plant design.