Stochastic Models in Reliability Engineering


Book Description

This book is a collective work by many leading scientists, analysts, mathematicians, and engineers who have been working at the front end of reliability science and engineering. The book covers conventional and contemporary topics in reliability science, all of which have seen extended research activities in recent years. The methods presented in this book are real-world examples that demonstrate improvements in essential reliability and availability for industrial equipment such as medical magnetic resonance imaging, power systems, traction drives for a search and rescue helicopter, and air conditioning systems. The book presents real case studies of redundant multi-state air conditioning systems for chemical laboratories and covers assessments of reliability and fault tolerance and availability calculations. Conventional and contemporary topics in reliability engineering are discussed, including degradation, networks, and dynamic reliability, resilience, and multi-state systems, all of which are relatively new topics to the field. The book is aimed at engineers and scientists, as well as postgraduate students involved in reliability design, analysis, and experiments and applied probability and statistics.




Reliability Models for Engineers and Scientists


Book Description

A discussion of the basic reliability concepts and models, Reliability Models for Engineers and Scientists demystifies modern mathematical reliability models. Requiring very little mathematical background on the reader’s part, this concise book introduces the models by focusing on their physical meaning and the supporting data; it then goes on to provide a wide scope of possible applications. The book also introduces a new concept of the Gini-type index, which when applied to aging/rejuvenating components (nonrepairable systems) can measure how different a given aging/rejuvenation distribution is compared to the exponential distribution. A similar index is then applied to aging/rejuvenating repairable systems, creating a bridge between the concepts. The chapters discuss models used in reliability, risk analysis, physics of failure, fracture mechanics, biological, pharmaceutical, and medical studies. They comprise an up-to-date, concise, and informative resource on reliability models, which does not require any special mathematical background.




Reliability and Availability Engineering


Book Description

Learn about the techniques used for evaluating the reliability and availability of engineered systems with this comprehensive guide.




Advances in System Reliability Engineering


Book Description

Recent Advances in System Reliability Engineering describes and evaluates the latest tools, techniques, strategies, and methods in this topic for a variety of applications. Special emphasis is put on simulation and modelling technology which is growing in influence in industry, and presents challenges as well as opportunities to reliability and systems engineers. Several manufacturing engineering applications are addressed, making this a particularly valuable reference for readers in that sector. - Contains comprehensive discussions on state-of-the-art tools, techniques, and strategies from industry - Connects the latest academic research to applications in industry including system reliability, safety assessment, and preventive maintenance - Gives an in-depth analysis of the benefits and applications of modelling and simulation to reliability




Probability, Statistics, and Reliability for Engineers and Scientists


Book Description

In a technological society, virtually every engineer and scientist needs to be able to collect, analyze, interpret, and properly use vast arrays of data. This means acquiring a solid foundation in the methods of data analysis and synthesis. Understanding the theoretical aspects is important, but learning to properly apply the theory to real-world p




Reliability Models for Engineers and Scientists


Book Description

A discussion of the basic reliability concepts and models, this book is suitable for students of reliability engineering as well as for those who wish a supplement on applied survival data analysis. The models discussed in the book are used in reliability, risk analysis, physics of failure, fracture mechanics, biological, pharmaceutical and medical studies. It is an up- to-date, concise, and informative handbook on reliability models, which does not require any special mathematical background. It also introduces a new concept of the Gini-type index.




Reliability Physics and Engineering


Book Description

"Reliability Physics and Engineering" provides critically important information for designing and building reliable cost-effective products. The textbook contains numerous example problems with solutions. Included at the end of each chapter are exercise problems and answers. "Reliability Physics and Engineering" is a useful resource for students, engineers, and materials scientists.




Reliability, Life Testing and the Prediction of Service Lives


Book Description

This book is intended for students and practitioners who have had a calculus-based statistics course and who have an interest in safety considerations such as reliability, strength, and duration-of-load or service life. Many persons studying statistical science will be employed professionally where the problems encountered are obscure, what should be analyzed is not clear, the appropriate assumptions are equivocal, and data are scant. In this book there is no disclosure with many of the data sets what type of investigation should be made or what assumptions are to be used.




Applied Reliability Engineering and Risk Analysis


Book Description

This complete resource on the theory and applications of reliability engineering, probabilistic models and risk analysis consolidates all the latest research, presenting the most up-to-date developments in this field. With comprehensive coverage of the theoretical and practical issues of both classic and modern topics, it also provides a unique commemoration to the centennial of the birth of Boris Gnedenko, one of the most prominent reliability scientists of the twentieth century. Key features include: expert treatment of probabilistic models and statistical inference from leading scientists, researchers and practitioners in their respective reliability fields detailed coverage of multi-state system reliability, maintenance models, statistical inference in reliability, systemability, physics of failures and reliability demonstration many examples and engineering case studies to illustrate the theoretical results and their practical applications in industry Applied Reliability Engineering and Risk Analysis is one of the first works to treat the important areas of degradation analysis, multi-state system reliability, networks and large-scale systems in one comprehensive volume. It is an essential reference for engineers and scientists involved in reliability analysis, applied probability and statistics, reliability engineering and maintenance, logistics, and quality control. It is also a useful resource for graduate students specialising in reliability analysis and applied probability and statistics. Dedicated to the Centennial of the birth of Boris Gnedenko, renowned Russian mathematician and reliability theorist




Statistical Reliability Engineering


Book Description

This book presents the state-of-the-art methodology and detailed analytical models and methods used to assess the reliability of complex systems and related applications in statistical reliability engineering. It is a textbook based mainly on the author’s recent research and publications as well as experience of over 30 years in this field. The book covers a wide range of methods and models in reliability, and their applications, including: statistical methods and model selection for machine learning; models for maintenance and software reliability; statistical reliability estimation of complex systems; and statistical reliability analysis of k out of n systems, standby systems and repairable systems. Offering numerous examples and solved problems within each chapter, this comprehensive text provides an introduction to reliability engineering graduate students, a reference for data scientists and reliability engineers, and a thorough guide for researchers and instructors in the field.