Natural and Enhanced Attenuation of Contaminants in Soils, Second Edition


Book Description

Natural attenuation has become an effective and low-cost alternative to more expensive engineered remediation. This new edition updates the principles and fundamentals of natural attenuation of contaminants with a broader view of the field. It includes new methods for evaluating natural attenuation mechanisms and microbial activity at the lab and field scales. Case studies, actual treatments and protocols, theoretical processes, case studies, numerical models, and legal aspects in the natural attenuation of organic and inorganic contaminants are examined. Challenges and future directions for the implementation of natural attenuation and enhanced remediation techniques are also considered.




Contaminants in the Subsurface


Book Description

At hundreds of thousands of commercial, industrial, and military sites across the country, subsurface materials including groundwater are contaminated with chemical waste. The last decade has seen growing interest in using aggressive source remediation technologies to remove contaminants from the subsurface, but there is limited understanding of (1) the effectiveness of these technologies and (2) the overall effect of mass removal on groundwater quality. This report reviews the suite of technologies available for source remediation and their ability to reach a variety of cleanup goals, from meeting regulatory standards for groundwater to reducing costs. The report proposes elements of a protocol for accomplishing source remediation that should enable project managers to decide whether and how to pursue source remediation at their sites.




Monitored Natural Attenuation of Inorganic Contaminants in Ground Water


Book Description

V.3 ... consists of individual chapters that describe 1) the conceptual background for radionuclides, including tritium, radon, strontium, technetium, uranium, iodine, radium, thorium, cesium, plutonium-americium and 2) data requirements to be met during site characterization.
















Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites


Book Description

Across the United States, thousands of hazardous waste sites are contaminated with chemicals that prevent the underlying groundwater from meeting drinking water standards. These include Superfund sites and other facilities that handle and dispose of hazardous waste, active and inactive dry cleaners, and leaking underground storage tanks; many are at federal facilities such as military installations. While many sites have been closed over the past 30 years through cleanup programs run by the U.S. Department of Defense, the U.S. EPA, and other state and federal agencies, the remaining caseload is much more difficult to address because the nature of the contamination and subsurface conditions make it difficult to achieve drinking water standards in the affected groundwater. Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites estimates that at least 126,000 sites across the U.S. still have contaminated groundwater, and their closure is expected to cost at least $110 billion to $127 billion. About 10 percent of these sites are considered "complex," meaning restoration is unlikely to be achieved in the next 50 to 100 years due to technological limitations. At sites where contaminant concentrations have plateaued at levels above cleanup goals despite active efforts, the report recommends evaluating whether the sites should transition to long-term management, where risks would be monitored and harmful exposures prevented, but at reduced costs.




Bioavailability of Contaminants in Soils and Sediments


Book Description

Bioavailability refers to the extent to which humans and ecological receptors are exposed to contaminants in soil or sediment. The concept of bioavailability has recently piqued the interest of the hazardous waste industry as an important consideration in deciding how much waste to clean up. The rationale is that if contaminants in soil and sediment are not bioavailable, then more contaminant mass can be left in place without creating additional risk. A new NRC report notes that the potential for the consideration of bioavailability to influence decision-making is greatest where certain chemical, environmental, and regulatory factors align. The current use of bioavailability in risk assessment and hazardous waste cleanup regulations is demystified, and acceptable tools and models for bioavailability assessment are discussed and ranked according to seven criteria. Finally, the intimate link between bioavailability and bioremediation is explored. The report concludes with suggestions for moving bioavailability forward in the regulatory arena for both soil and sediment cleanup.