Remote Sensing of Inherent and Apparent Optical Properties in Optically Complex Shelf Seas


Book Description

Variability in the patterns of ocean colour is frequently observed in shelf seas, where a combination of phytoplankton cells, mineral particles and coloured dissolved organic matter are driving the optical properties of the water column. Understanding the contributions of each material to the total optical properties is essential for understanding and monitoring the processes which affect shelf sea ecosystems. Lee et al. (2002, 2005b, 2007, 2009, 2013) developed a method for the recovery of the absorption, backscattering and mean diffuse attenuation co-efficients and the euphotic depth from the remote sensing reflectance. Using the Irish Sea as a study site, the procedure of Lee et al. and two empirical methods for recovering the euphotic depth (Cunningham et al., 2013 and Zhao et al., 2013), were evaluated. The methods were initially adjusted based on a regional bio-optical model, then validated against field data with excellent recoveries of all parameters. By considering the backscattering to absorption ratios of phytoplankton and mineral particles, a new method for separating the total absorption coefficient recovered by the quasi-analytical algorithm into the phytoplankton and mineral components was developed. Application of this method to the bio-optical model created for the Irish Sea recovered phytoplankton and mineral absorption coefficients which were well correlated with the modelled values. The sensitivity of the absorption partitioning procedure to the assumption made about CDOM variability was evaluated, demonstrating the phytoplankton and mineral absorption coefficients could be recovered within the Irish Sea with root mean square errors of 0.02 m−1 and 0.009−1 respectively. The inversion methods developed and validated were applied to eight years of MODIS data. This showed both spatial and temporal variability for all parameters, which corresponded to different mixing regimes and were explained in terms of phytoplankton cells and mineral particles. The results obtained from the satellite imagery have demonstrated that optical remote sensing can be used to provide an insight into shelf sea ecosystems.




Optical Properties and Remote Sensing of Inland and Coastal Waters


Book Description

Optical Properties and Remote Sensing of Inland and Coastal Waters discusses the methodology and the theoretical basis of remote sensing of water. It presents physical concepts of aquatic optics relevant to remote sensing techniques and outlines the problems of remote measurements of the concentrations of organic and inorganic matter in water. It also details the mathematical formulation of the processes governing water-radiation interactions and discusses the development of bio-optical models to incorporate optically complex bodies of water into remote sensing projects. Optical Properties and Remote Sensing of Inland and Coastal Waters derives and evaluates the interrelationships among inherent optical properties of natural water, water color, water quality, primary production, volume reflectance spectra, and remote sensing. This timely and comprehensive text/reference addresses the increasing tendency toward multinational and multidisciplinary climate studies and programs.




Optical Properties and Remote Sensing of Inland and Coastal Waters


Book Description

Optical Properties and Remote Sensing of Inland and Coastal Waters discusses the methodology and the theoretical basis of remote sensing of water. It presents physical concepts of aquatic optics relevant to remote sensing techniques and outlines the problems of remote measurements of the concentrations of organic and inorganic matter in water. It also details the mathematical formulation of the processes governing water-radiation interactions and discusses the development of bio-optical models to incorporate optically complex bodies of water into remote sensing projects. Optical Properties and Remote Sensing of Inland and Coastal Waters derives and evaluates the interrelationships among inherent optical properties of natural water, water color, water quality, primary production, volume reflectance spectra, and remote sensing. This timely and comprehensive text/reference addresses the increasing tendency toward multinational and multidisciplinary climate studies and programs.




Optical Properties and Remote Sensing of Multicomponental Water Bodies


Book Description

The text covers the problems concerning optical properties and remote sensing of turbid and surface-polluted oceans and lakes. In four chapters Helgi Arst compares remote sensing data with data collected from similar examination of clean waters. Chapter 1 provides an overview of the main radiative and remote sensing characteristics and provides discussion on the properties of optically active substances (OAS) in the water and their variability and concentration, drawing on original data obtained in the Baltic Sea region. Chapter 2 focuses on the investigation of the influence of surface oil slicks on the reflection and absorption of solar radiation for both calm and ruffled sea surfaces. A model is provided for determining the temperature and the reflected component in upwelling rough seas. Chapter 3 provides remote sensing results obtained mainly for the Baltic Sea region, including some lakes. Correlations between the concentrations of OAS, water transparency and total remote sensing reflectance are investigated. Chapter 4 deals with subsurface irradiance and optical classification of turbid waters. This chapter analyses the different criteria of the euphotic depth, drawing on a semi-empirical model for the estimation of underwater light scattering. The conclusion provides discussion on the results obtained.




Closure Between Apparent and Inherent Optical Properties of the Ocean with Applications to the Determination of Spectral Bottom Reflectance


Book Description

ABSTRACT: This study focuses on comparing six different marine optical models, field measurements, and laboratory measurements. Inherent Optical Properties (IOPs) of the water column depend only on the constituents within the water, not on the ambient light field. Apparent Optical Properties (AOPs) depend both on IOPs and the geometric underwater light field resulting from solar irradiance. Absorption (a) and scattering (b) are IOPs. Scattering can be partitioned into backscattering (b[subscript b]). Remote Sensing Reflectance (R[subscript rs]), the ratio of radiant light leaving the water to the light entering the water surface plane (E[subscript d]), is an AOP. R[subscript rs] is proportional to b[subscript b]/(a + b[subscript b]). Using this relationship, R[subscript rs] is inverted to determine both absorption and backscattering. The constituents contributing to both absorption and backscattering can then be further deconvolved using modeling techniques. The in situ instruments usually have a fixed path length while AOP measurement path length depends on the penetration and/or return of downwelling solar irradiance. As a consequence, AOP measurements use a longer path length than in situ instruments. If the path length of a direct IOP measurement instrument is too short, there may not be sufficient signal to determine a change in value. While the AOP inversions require more empirical assumptions to determine IOP values than in situ instruments, they provide a higher signal to noise ratio in clearer waters. This study defines closure as the statistical agreement between instruments and methods in order to determine the same optical property. No method is considered absolute truth. An R[subscript rs] inversion algorithm was best under most of the test stations for measuring IOP values. One exception was when bottom reflectance was significant, an inversion of diffuse attenuation (the change in the natural log of E[subscript d] over depth) was better for determining absorption and a field instrument was better for determining backscattering. The relationships between AOPs and IOPs provide estimates of unmeasured optical properties. A method was developed to determine the spectral reflectance of the bottom using IOP estimates and R[subscript rs].







Remote Sensing of Coastal Aquatic Environments


Book Description

This book provides extensive insight on remote sensing of coastal waters from aircraft and space-based platforms. The primary focus of the book is optical remote sensing using passive instruments, to measure and analyze the coastal aquatic environment. The authors have gathered information from a variety of sources, to help non-specialists grasp new techniques and technology, to quickly produce useful data







Uniqueness in Remote Sensing of the Inherent Optical Properties of Ocean Water


Book Description

This study examines the problem of uniqueness in the relationship between the remote-sensing reflectance (Rrs) and the inherent optical properties (IOPs) of ocean water. The results show that diffuse reflectance of plane irradiance from ocean water is inherently ambiguous. Furthermore, in the 400