Green Alternatives and National Energy Strategy


Book Description

It is no secret that the United States' dependence on oil -- mostly foreign -- puts the country in a precarious position. The United States needs innovative ways not only to power millions of automobiles on its highways but also to secure sustainable sources of fuel for the future. This book presents the latest facts and figures about alternative energy to any physicist, engineer, policymaker, or concerned citizen who needs a reliable source of information on the nation's looming energy crisis. Philip G. Gallman focuses especially on green vehicles and the interrelationship between their design and various energy sources. He explains simply and clearly the complex energy and automotive engineering issues involved in developing green vehicles, measures their likely effect on energy resource demand, and considers what they might mean for national energy strategy. Addressing problems associated with renewable resources often overlooked or ignored in the popular press, Gallman explains what replacing oil with alternative sources of energy realistically entails. Can the nation satisfy its energy demands with wind turbines, solar power, hydroelectric power, or geothermal power? Is biodiesel or electricity the answer to our gas-guzzling ways? Organized logically and with an accessible narrative, Green Alternatives and National Energy Strategy guides readers through the essential questions and hurdles the United States must answer and overcome to transition from a petroleum-dependent nation to one that runs on sustainable, renewable energy.




Renewable Energy and Wildlife Conservation


Book Description

Brings together disparate conversations about wildlife conservation and renewable energy, suggesting ways these two critical fields can work hand in hand. Renewable energy is often termed simply "green energy," but its effects on wildlife and other forms of biodiversity can be quite complex. While capturing renewable resources like wind, solar, and energy from biomass can require more land than fossil fuel production, potentially displacing wildlife habitat, renewable energy infrastructure can also create habitat and promote species health when thoughtfully implemented. The authors of Renewable Energy and Wildlife Conservation argue that in order to achieve a balanced plan for addressing these two crucially important sustainability issues, our actions at the nexus of these fields must be directed by current scientific information related to the ecological effects of renewable energy production. Synthesizing an extensive, rapidly growing base of research and insights from practitioners into a single, comprehensive resource, contributors to this volume • describe processes to generate renewable energy, focusing on the Big Four renewables—wind, bioenergy, solar energy, and hydroelectric power • review the documented effects of renewable energy production on wildlife and wildlife habitats • consider current and future policy directives, suggesting ways industrial-scale renewables production can be developed to minimize harm to wildlife populations • explain recent advances in renewable power technologies • identify urgent research needs at the intersection of renewables and wildlife conservation Relevant to policy makers and industry professionals—many of whom believe renewables are the best path forward as the world seeks to meet its expanding energy needs—and wildlife conservationists—many of whom are alarmed at the rate of renewables-related habitat conversion—this detailed book culminates with a chapter underscoring emerging opportunities in renewable energy ecology. Contributors: Edward B. Arnett, Brian B. Boroski, Regan Dohm, David Drake, Sarah R. Fritts, Rachel Greene, Steven M. Grodsky, Amanda M. Hale, Cris D. Hein, Rebecca R. Hernandez, Jessica A. Homyack, Henriette I. Jager, Nicole M. Korfanta, James A. Martin, Christopher E. Moorman, Clint Otto, Christine A. Ribic, Susan P. Rupp, Jake Verschuyl, Lindsay M. Wickman, T. Bently Wigley, Victoria H. Zero




CO2 Capture, Utilization, and Sequestration Strategies


Book Description

Offering practical treatment strategies for CO2 emission generated from various energy-related sources, CO2 Capture, Utilization, and Sequestration Strategies emphasizes carbon capture, utilization, and sequestration (CCUS) with special focus on methods for each component of the strategy. While other books mostly focus on CCS strategy for CO2, this book details the technologies available for utilization of CO2, showing how it can be a valuable renewable source for chemicals, materials, fuels, and power instead of a waste material damaging the environment. Highlights current and potential future commercially viable CCUS strategies Discusses applications for direct and the more complex indirect utilization of CO2 streams Examines viability of the mineral carbonation process and biological treatments to convert CO2 into useful biochemicals, biomaterials, and biofuels Explores heterogeneous catalysis for thermal and electrochemical conversion and solar energy-based thermal, photo-thermal, and photocatalytic conversion of CO2 Presents the rapidly growing concept of plasma-activated catalysis for CO2 conversion CO2 Capture, Utilization, and Sequestration Strategies is a valuable reference for researchers in academia, industry, and government organizations seeking a guide to effective CCUS processes, technologies, and applications.




Renewable Energy Policy Convergence in the EU


Book Description

This book examines the coordination of renewable energy policies in the European Union using an innovative theoretical approach to explain national policy making. David Jacobs asks, why are national support instruments for electricity from renewable energy sources converging, even though the harmonisation of these frameworks at the European level has failed? Which causal mechanisms lead to cross-national policy similarities? And what are the implications for policy coordination in the EU? The author traces the evolution of feed-in tariffs - the most successful and most widely used support mechanism for renewable electricity - in Germany, Spain and France. He reveals increasing cross-national policy similarities in feed-in tariff design - despite the failure of harmonizing instruments at the European level. He explains these increasing policy similarities by applying policy convergence theory. Policy convergence can occur voluntarily, based on transnational communication, regulatory competition and technological innovations and these findings have important implications for European policy steering. The key to this book is the interrelation of an innovative theoretical concept (coordination of policies in the international arena via voluntary cooperation) with a very topical empirical research focus - the promotion of renewable energies in the EU. It will be essential reading for scholars and students of environmental policy, comparative politics and European studies.




Renewable Energy Sources and Climate Change Mitigation


Book Description

This Intergovernmental Panel on Climate Change Special Report (IPCC-SRREN) assesses the potential role of renewable energy in the mitigation of climate change. It covers the six most important renewable energy sources - bioenergy, solar, geothermal, hydropower, ocean and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. SRREN brings a broad spectrum of technology-specific experts together with scientists studying energy systems as a whole. Prepared following strict IPCC procedures, it presents an impartial assessment of the current state of knowledge: it is policy relevant but not policy prescriptive. SRREN is an invaluable assessment of the potential role of renewable energy for the mitigation of climate change for policymakers, the private sector, and academic researchers.




The Power of Renewables


Book Description

The United States and China are the world's top two energy consumers and, as of 2010, the two largest economies. Consequently, they have a decisive role to play in the world's clean energy future. Both countries are also motivated by related goals, namely diversified energy portfolios, job creation, energy security, and pollution reduction, making renewable energy development an important strategy with wide-ranging implications. Given the size of their energy markets, any substantial progress the two countries make in advancing use of renewable energy will provide global benefits, in terms of enhanced technological understanding, reduced costs through expanded deployment, and reduced greenhouse gas (GHG) emissions relative to conventional generation from fossil fuels. Within this context, the U.S. National Academies, in collaboration with the Chinese Academy of Sciences (CAS) and Chinese Academy of Engineering (CAE), reviewed renewable energy development and deployment in the two countries, to highlight prospects for collaboration across the research to deployment chain and to suggest strategies which would promote more rapid and economical attainment of renewable energy goals. Main findings and concerning renewable resource assessments, technology development, environmental impacts, market infrastructure, among others, are presented. Specific recommendations have been limited to those judged to be most likely to accelerate the pace of deployment, increase cost-competitiveness, or shape the future market for renewable energy. The recommendations presented here are also pragmatic and achievable.




Transition to Renewable Energy Systems


Book Description

In this ready reference, top academic researchers, industry players and government officers join forces to develop commercial concepts for the transition from current nuclear or fossil fuel-based energy to renewable energy systems within a limited time span. They take into account the latest science and technology, including an analysis of the feasibility and impact on the environment, economy and society. In so doing, they discuss such complex topics as electrical and gas grids, fossil power plants and energy storage technologies. The contributions also include robust, conceivable and breakthrough technologies that will be viable and implementable by 2020.




Renewable Energy Resources


Book Description

In the years between the first and this second edition, renewable energy has come of age; it makes good sense, good government and good business. This book considers the unchanging principles of renewable energy technologies alongside modern application and case studies. In this second edition, the presentation of the fundamentals has been improved throughout, and chapters on economics and institutional factors have been added. Likewise, sections on environmental impact have been added to each technology chapter. Renewable Energy Resources supports multi-disciplinary.




Hybrid Energy Systems


Book Description

Hybrid Energy Systems: Strategy for Industrial Decarbonization demonstrates how hybrid energy and processes can decarbonize energy industry needs for power and heating and cooling. It describes the role of hybrid energy and processes in nine major industry sectors and discusses how hybrid energy can offer sustainable solutions in each. Introduces the basics and examples of hybrid energy systems Examines hybrid energy and processes in coal, oil and gas, nuclear, building, vehicle, manufacturing and industrial processes, computing and portable electronic, district heating and cooling, and water sectors Shows that hybrid processes can improve efficiency and that hybrid energy can effectively insert renewable fuels in the energy industry Serves as a companion text to the author’s book Hybrid Power: Generation, Storage, and Grids Written for advanced students, researchers, and industry professionals involved in energy-related processes and plants, this book offers latest research and practical strategies for application of the innovative field of hybrid energy.




Hybrid Power


Book Description

Hybrid energy systems integrate multiple sources of power generation, storage, and transport mechanisms and can facilitate increased usage of cleaner, renewable, and more efficient energy sources. Hybrid Power: Generation, Storage, and Grids discusses hybrid energy systems from fundamentals through applications and discusses generation, storage, and grids. Highlights fundamentals and applications of hybrid energy storage Discusses use in hybrid and electric vehicles and home energy needs Discusses issues related to hybrid renewable energy systems connected to the utility grid Describes the usefulness of hybrid microgrids and various forms of off-grid energy such as mini-grids, nanogrids, and stand-alone systems Covers the use of hybrid renewable energy systems for rural electrification around the world Discusses various forms and applications of hybrid energy systems, hybrid energy storage, hybrid microgrids, and hybrid off-grid energy systems Details simulation and optimization of hybrid renewable energy systems This book is aimed at advanced students and researchers in academia, government, and industry, seeking a comprehensive overview of the basics, technologies, and applications of hybrid energy systems.