Renewable Polymers and Polymer-Metal Oxide Composites


Book Description

Renewable Polymers and Polymer-Metal Oxide Composites: Synthesis, Properties, and Applications serves as a reference on the key concepts of the advances of polymer-oxide composites. The book reviews knowledge on polymer-composite theory, properties, structure, synthesis, and their characterization and applications. There is an emphasis on coupling metal oxides with polymers from renewable sources. Also, the latest advances in the relationship between the microstructure of the composites and the resulting improvement of the material's properties and performance are covered. The applications addressed include desalination, tissue engineering, energy storage, hybrid energy systems, food, and agriculture. This book is suitable for early-career researchers in academia and R&D in industry who are working in the disciplines of materials science, engineering, chemistry and physics. - Provides basic principles, theory and synthetic methods of composite materials, polymer composites and metal oxides - Reviews the latest advances in polymer-oxide-based applications in medicine, water treatment, energy and sensing - Discusses materials from renewable resources, including lifecycle assessment, economic aspects and potential application in tissue engineering, photovoltaics and food packaging




Graphene Oxide-Metal Oxide and other Graphene Oxide-Based Composites in Photocatalysis and Electrocatalysis


Book Description

Graphene Oxide-Metal Oxide and other Graphene Oxide-Based Composites in Photocatalysis and Electrocatalysis reflects on recent progress and challenges in graphene-metal oxide composites. The book reviews synthetic strategies, characterization methods and applications in photocatalysis and electrocatalysis. Graphene-metal oxides, graphene-novel metals and other composites intended for sustainable energy production, energy storage, and environmental development such as H2 production, CO2 reduction, pollutant removal, supercapacitors and lithium ion batteries are covered. Overall, this book presents a comprehensive, systematic, and up-to-date summary on graphene oxide-based materials. Graphene oxide and related composite materials bring new perspectives and prospects to both photocatalysts and electrocatalysts. The collective and synergistic effect between graphene oxide and metal oxide are manifold. The significance of the relationship among these groups of materials, their structures and performance is emphasized. - Introduces the fundamentals of graphene oxides, their derivatives, common processes, principles and requirements for photocatalysis and electrocatalysis - Reviews graphene-oxides for photocatalysis applications in H2 production, CO2 reduction, environment remediation, and more - Covers graphene-oxides for electrocatalysis applications in energy, including supercapacitors and lithium-ion batteries




Advances in Metal Oxides and Their Composites for Emerging Applications


Book Description

Advances in Metal Oxides and their Composites for Emerging Applications reviews key properties of metal-oxide based composites, including their structural, physicochemical, optical, electrical components and resulting performance in a wide range of diverse applications. Synthetic protocols used to create metal oxides with desirable morphologies, properties and performance for applications in solar energy harvesting, energy storage and environmental remediation are emphasized. Emerging technologies that address important global challenges such as energy shortage, the hazardous effects of non-renewable energy sources, unaffordable energy technologies, and the contaminants present in air and water are also covered. This book is an ideal resource for materials scientists and engineers working in academia and R&D. In addition, it's appropriate for those who either need an introduction to potential research directions or for experienced researchers and practitioners looking for a key reference on the latest advances. - Introduces the fundamental properties of metal oxide-based composites, paying special attention to physicochemical, optical, electrical and structural characteristics - Provides an overview of the synthetic protocols used to design and tune the properties of metal oxide-based composites for key emerging applications - Discusses metal oxide-based composites and their use in energy applications such as energy storage, energy harvesting and environmental remediation




Complex and Composite Metal Oxides for Gas, VOC and Humidity Sensors, Volume 2


Book Description

Approx.530 pages - Provides an overview of the material preparation and synthesis strategies of metal oxide composite and metal oxide hybrid materials for use in gas and humidity sensors - Reviews emerging advanced metal oxide materials such as perovskites, spinel ferrites, and quaternary materials for gas and VOC sensors - Discusses the potential opportunities as well as challenges to be circumvented in the use of metal oxide materials to enable new sensor technologies




Complex and Composite Metal Oxides for Gas, VOC, and Humidity Sensors, Volume 1


Book Description

Complex and Composite Metal Oxides for Gas, VOC, and Humidity Sensors focuses on an overview of the advanced nanocomposite metal oxide materials for use in sensors for environmental monitoring applications. Volume 1 Fundamentals and Approaches introduces the ground rules essential for the development of smart gas, VOC and humidity sensors. This volume familiarizes researchers with the different sensors (resistive, electrolyte, FET, optical etc.) developed on various properties that includes electrical, SPR, luminescence, fiber optics etc. fabricated using metal oxide hybrids and nanocomposites. - Introduces the fundamentals of electrical and optical gas and humidity sensors - Reviews metal oxide hybrid materials for gas and humidity sensor applications, including metal oxide/polymer and metal oxide/carbon composite materials - Discusses complex metal oxide compounds and composite materials for use in gas, VOC, and humidity sensors




Nanomaterials in Environmental Analysis


Book Description

In todays' world with its widespread usage of personal-care products, pharmaceuticals, surfactants, flame retardants, plasticizers, various industrial additives, metals and metalloids, pesticides, and pesticide metabolites, environmental contaminants are an increasing source of pollution with a severe effect on the ecological system. Industries that produce these contaminants must find answers to remediate this.Nanomaterials in Environmental Analysis contributes to solving this problem by providing researchers in industry and academia with promising applications of nanoparticles in detection techniques and in removal of chemical species from the environment. Each chapter covers an aspect of using nanoparticles in detecting, measuring and remediating toxic chemical species in the environment. - Explores the application of nanoparticles for the identification and quantification of pollutants from various environments - Serves as a quick reference and source of knowledge on nanoparticles-based techniques for environmental applications - Takes foundational knowledge for application to research in the area - Provides future trends




Metal Oxide-Carbon Hybrid Materials


Book Description

Metal Oxide–Carbon Hybrid Materials: Synthesis, Properties and Applications reviews the advances in the fabrication and application of metal oxide–carbon-based nanocomposite materials. Their unique properties make them ideal materials for gas-sensing, photonics, catalysis, opto-electronic, and energy-storage applications. In the first section, the historical background to the hybrid materials based on metal oxide–carbon and the hybridized metal oxide composites is provided. It also highlights several popular methods for the preparation of metal oxide–carbon composites through solid-state or solution-phase reactions, and extensively discusses the materials' properties. Fossil fuels and renewable energy sources cannot meet the ever-increasing energy demands of an industrialized and technology-driven global society. Therefore, the role of metal oxide–carbon composites in energy generation, hydrogen production, and storage devices, such as rechargeable batteries and supercapacitors, is of extreme importance. These problems are discussed in in the second section of the book. Rapid industrialization has resulted in serious environmental issues which in turn have caused serious health problems that require the immediate attention of researchers. In the third section, the use of metal oxide–carbon composites in water purification, photodegradation of industrial contaminants, and biomedical applications that can help to clean the environment and provide better healthcare solutions is described. The final section is devoted to the consideration of problems associated with the development of sensors for various applications. Numerous studies performed in this area have shown that the use of composites can significantly improve the operating parameters of such devices. Metal Oxide–Carbon Hybrid Materials: Synthesis, Properties and Applications presents a comprehensive review of the science related to metal oxide–carbon composites and how researchers are utilizing these materials to provide solutions to a large array of problems. - Reviews the fundamental properties and fabrication methods of metal-oxide–carbon composites - Discusses applications in energy, including energy generation, hydrogen production and storage, rechargeable batteries, and supercapacitors - Includes current and emerging applications in environmental remediation and sensing




Metal Oxide Defects


Book Description

Metal Oxide Defects: Fundamentals, Design, Development and Applications provides a broad perspective on the development of advanced experimental techniques to study defects and their chemical activity and catalytic reactivity in various metal oxides. This book highlights advances in characterization and analytical techniques to achieve better understanding of a wide range of defects, most importantly, state-of-the-art methodologies for controlling defects. The book provides readers with pathways to apply basic principles and interpret the behavior of metal oxides. After reviewing characterization and analytical techniques, the book focuses on the relationship of defects to the properties and performance of metal oxides. Finally, there is a review of the methods to control defects and the applications of defect engineering for the design of metal oxides for applications in optoelectronics, energy, sensing, and more. This book is a key reference for materials scientists and engineers, chemists, and physicists. - Reviews advances in characterization and analytical techniques to understand the behavior of defects in metal oxide materials - Introduces defect engineering applied to the design of metal oxide materials with desirable properties - Discusses applications of defect engineering to enhance the performance of materials for a wide range of applications, with an emphasis on optoelectronics




Metal Oxides for Non-volatile Memory


Book Description

Metal Oxides for Non-volatile Memory: Materials, Technology and Applications covers the technology and applications of metal oxides (MOx) in non-volatile memory (NVM) technology. The book addresses all types of NVMs, including floating-gate memories, 3-D memories, charge-trapping memories, quantum-dot memories, resistance switching memories and memristors, Mott memories and transparent memories. Applications of MOx in DRAM technology where they play a crucial role to the DRAM evolution are also addressed. The book offers a broad scope, encompassing discussions of materials properties, deposition methods, design and fabrication, and circuit and system level applications of metal oxides to non-volatile memory. Finally, the book addresses one of the most promising materials that may lead to a solution to the challenges in chip size and capacity for memory technologies, particular for mobile applications and embedded systems. - Systematically covers metal oxides materials and their properties with memory technology applications, including floating-gate memory, 3-D memory, memristors, and much more - Provides an overview on the most relevant deposition methods, including sputtering, CVD, ALD and MBE - Discusses the design and fabrication of metal oxides for wide breadth of non-volatile memory applications from 3-D flash technology, transparent memory and DRAM technology




Perovskite Metal Oxides


Book Description

Perovskite Metal Oxides: Synthesis, Properties and Applications provides an overview on the topic, including the synthesis of various types of perovskites, their properties, characterization and application. The book reviews the applications of this category of materials for photovoltaics, electronics, biomedical, fuel cell, photocatalyst, sensor, energy storage and catalysis, along with processing techniques of perovskite metal oxides with a focus on low-cost and high-efficiency methods, including various properties and probable applications in academia and industry. Other sections discuss strategies to improve the functionality of perovskite metal oxide materials, including chemical methods and controlling the size, shape and structure of the materials. Finally, applications of perovskite metal oxides in energy conversion and storage, sensing and electronics are covered. - Provides an overview of perovskite metal oxides, with an emphasis on synthesis, fabrication and characterization methods - Discusses strategies to improve the functionality of perovskite metal oxide materials, including chemical methods and controlling the size, shape and structure of the materials - Reviews applications of perovskite metal oxides in energy conversion and storage, sensing and electronics