Renewable Resources for Surface Coatings, Inks and Adhesives


Book Description

Providing a detailed survey of renewable raw materials for paints, inks and glues, this book is ideal for researchers and practitioners working in the areas of green chemistry, industrial chemistry and sustainability. Beginning with a brief history of coatings and adhesives, this book walks the reader through the chemistry, properties, sourcing and processing of a number of renewable raw materials, including lipids, natural resins, proteins, and carbohydrates. Their use in a range of recent developments and concepts from material protection, to decorative paints and coatings, adhesives and sealants is highlighted, providing the reader with a complete and modern foundation to the field.




Green Chemistry for Surface Coatings, Inks and Adhesives


Book Description

Many modern surface coatings and adhesives are derived from fossil feedstocks. With fossil fuels becoming more polluting and expensive to extract as supplies dwindle, industry is turning increasingly to nature, mimicking natural solutions using renewable raw materials and employing new technologies. Highlighting sustainable technologies and applications of renewable raw materials within the framework of green and sustainable chemistry, circular economy and resource efficiency, this book provides a cradle-to-cradle perspective. From potential feedstocks to recycling/reuse opportunities and the de-manufacture of adhesives and solvents, green chemistry principles are applied to all aspects of surface coating, printing, adhesive and sealant manufacture. This book is ideal for students, researchers and industrialists working in green sustainable chemistry, industrial coatings, adhesives, inks and printing technologies.




Green Chemistry for Surface Coatings, Inks and Adhesives


Book Description

Many modern surface coatings and adhesives are derived from fossil feedstocks. With fossil fuels becoming more polluting and expensive to extract as supplies dwindle, industry is turning increasingly to nature, mimicking natural solutions using renewable raw materials and employing new technologies. Highlighting sustainable technologies and applications of renewable raw materials within the framework of green and sustainable chemistry, circular economy and resource efficiency, this book provides a cradle-to-cradle perspective. From potential feedstocks to recycling/reuse opportunities and the de-manufacture of adhesives and solvents, green chemistry principles are applied to all aspects of surface coating, printing, adhesive and sealant manufacture. This book is ideal for students, researchers and industrialists working in green sustainable chemistry, industrial coatings, adhesives, inks and printing technologies.




Green Chemistry and Green Materials from Plant Oils and Natural Acids


Book Description

There is an increasing awareness that materials and chemicals produced from fossil fuels are not sustainable, both in terms of the pollution caused by the extraction and production processes, and the fact that there is only a finite supply of these fossil fuels. Therefore, there is a strong incentive to find sources for chemicals and materials from source materials that we know we can continue to generate. Plants are a source of a wide variety of chemicals, many with interesting properties, and these chemical feedstocks are considered renewable rather than finite. Green Chemistry and Green Materials from Plant Oils and Natural Acids covers the application of these natural materials in producing polymers, lubricants and plasticisers.




Green Fire Retardants for Polymeric Materials


Book Description

Many of the polymers we use every day are highly flammable. Historically, a large number of home fires were caused by ignited polymeric materials until legislation was introduced requiring fire retardants to be added to these materials. Fire retardants increase the time it takes for materials to ignite, providing valuable time to prevent a fire or escape. However, it has become apparent that many of the traditional treatments used as fire retardants are harmful to human health and highly persistent in the environment. With evermore polymeric materials in our homes and lives it is still highly valuable to be able to make fire retardants, but consideration must be given to their environmental impact and sustainability. Green Fire Retardants for Polymeric Materials looks at both the choice of different materials and treatments for improving the fire retardancy of polymeric materials, as well as green approaches to synthesising these fire retardants. It is a timely resource both for green chemists interested in real world applications for their work and polymer scientists keen to increase the sustainability of their products and processes.




Developments in Biodiesel


Book Description

Transportation remains one of the largest contributors to global carbon dioxide emissions with the majority of vehicles using fossil-based fuels such as gasoline and diesel. Therefore, alternatives that come from a renewable feedstock and create fewer carbon emissions are urgently needed. Biodiesel, an alternative to fossil-based diesel fuel, can be produced from renewable or waste feedstocks such as biomass, animal fats and industrial wastes making it much more sustainable. However, challenges remain in improving and refining the properties of biodiesel, developing production processes and choosing feedstocks with optimal sustainability. Focusing on recent advances in the areas of feedstocks for biodiesel, production processes, and testing and enhancement of properties, Developments in Biodiesel provides a balance between academic and industrial viewpoints across a range of topics. It is an ideal reference for both academics and industrialists interested in sustainable energy, sustainable fuels and biomass/waste valorisation.




Green Sample Preparation Techniques


Book Description

There is a trend in analytical chemistry towards development of eco-friendly methods of sample preparation without loss of efficiency. This book provides a general, critical, and updated vision of the different green sample preparation approaches that have been developed. These include miniaturisation of the extraction techniques that allow a reduction not only of the chemicals used during the process, but also of the sample amount; the use of greener solvents, such as certain ionic liquids (ILs) or deep eutectic solvents (DES), instead of conventional organic solvents; and the use of new selective sorbent materials that allow both extraction and clean-up in the same step. All of these strategies have been successfully applied to the determination of a wide variety of organic and inorganic compounds. Advanced undergraduate and graduate students will find this book a good reference source and, because of the multidisciplinary nature of this topic, it will be of use to a broad audience including chemists, materials scientists, environmental analysts, forensic scientists, pharmacists, biologists and chemical engineers, who are involved and interested in the future frontiers of analytical chemistry.




Green Gasoline


Book Description

Transportation currently takes up around a third of overall energy usage, of which the majority is petroleum-based gasoline. Petroleum is both a finite resource and a big contributor to the carbon emissions that are causing climate change. To continue to benefit from transportation whilst mitigating climate change it is essential to find alternatives to petroleum-based gasoline. Although a lot of recent developments have focused on electrifying transport the infrastructure for large scale uptake of electric vehicles is still lacking and it may be less practical in some parts of the world than others. Biofuels, therefore, still have a role to play in improving the sustainability of our transportation systems. The term green gasoline refers to biofuels intended to be direct drop-in replacements for petroleum-based gasoline. Such products allow vehicles to run on biofuel without any engine modifications and, being made from biomass, they are both renewable and have a better carbon emission profile than petroleum-based gasoline. Green Gasoline covers a range of new technologies being used to produce these biofuels and compares them to petroleum-based fuels in terms of sustainability. It will be an interesting read for those working in fuel chemistry as well as green chemists and anyone with an interest in transport sustainability.




Green Corrosion Inhibition


Book Description

Corrosion affects every industry in which metal is involved, from manufacturing machinery to transport pipelines, and it is estimated to cost the global economy trillions of dollars per year. Many of the traditional methods for inhibiting corrosion are highly toxic (such as hexavalent chromium) or do not degrade readily in the environment (such as Benzotriazole) meaning they pose a risk to human and environmental health. Much recent work in the area has gone into searching for greener alternatives that will be both safe and effective. Beginning with a look at the fundamentals of corrosion inhibition and an explanation of the concepts of green chemistry, this book discusses various types of chemical that have been tested for their potential as greener corrosion inhibitors with reference to industrial applications. Green Corrosion Inhibition is a valuable reference for chemists and chemical engineers working in both research and design and academia who want to learn more about green corrosion inhibitors, their synthesis, design, and industrial scale applications.




Toward a PFAS-free Future


Book Description

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are extensively used in consumer products, despite their high persistence and other hazards. The risks posed by this chemical class to human health and the environment, which are increasingly becoming understood, have triggered regulation and policy changes. However, safer alternatives to these technically effective materials and methods to discover and use those alternatives are still under development. Remediation of PFAS contaminated sites will not solve the growing worldwide pollution, but substitution with safer substances at the formulation and manufacturing phases will at least abate the flow of PFASs into our bodies and environment. Introducing safer alternatives to some of the PFASs of concern used in select industry sectors, this book informs the reader about the processes of chemical hazard and alternatives assessment that can foster innovation. It is a valuable resource for both green chemists and industrial chemists interested in how they can make their products safer without compromising on function.