Renormalization


Book Description




Renormalization


Book Description

This monograph is the first to present the recently discovered renormalization techniques for the Schrödinger and Dirac equations, providing a mathematically rigorous, yet simple and clear introduction to the subject. It develops field-theoretic techniques such as Feynman graph expansions and renormalization, taking pains to make all proofs as simple as possible by using generating function techniques throughout. Renormalization is performed by using an exact renormalization group differential equation, a technique that provides simple but complete proofs of the theorems.




Lectures On Phase Transitions And The Renormalization Group


Book Description

Covering the elementary aspects of the physics of phases transitions and the renormalization group, this popular book is widely used both for core graduate statistical mechanics courses as well as for more specialized courses. Emphasizing understanding and clarity rather than technical manipulation, these lectures de-mystify the subject and show precisely "how things work." Goldenfeld keeps in mind a reader who wants to understand why things are done, what the results are, and what in principle can go wrong. The book reaches both experimentalists and theorists, students and even active researchers, and assumes only a prior knowledge of statistical mechanics at the introductory graduate level.Advanced, never-before-printed topics on the applications of renormalization group far from equilibrium and to partial differential equations add to the uniqueness of this book.




Renormalization and Effective Field Theory


Book Description

Quantum field theory has had a profound influence on mathematics, and on geometry in particular. However, the notorious difficulties of renormalization have made quantum field theory very inaccessible for mathematicians. This provides complete mathematical foundations for the theory of perturbative quantum field theory, based on Wilson's ideas of low-energy effective field theory and on the Batalin-Vilkovisky formalism.




Renormalization


Book Description

This book provides a coherent exposition of the techniques underlying these calculations.




Renormalization Group and Fixed Points


Book Description

This Brief presents an introduction to the theory of the renormalization group in the context of quantum field theories of relevance to particle physics. Emphasis is placed on gaining a physical understanding of the running of the couplings. The Wilsonian version of the renormalization group is related to conventional perturbative calculations with dimensional regularization and minimal subtraction. An introduction is given to some of the remarkable renormalization group properties of supersymmetric theories.




Scaling and Renormalization in Statistical Physics


Book Description

This text provides a thoroughly modern graduate-level introduction to the theory of critical behaviour. It begins with a brief review of phase transitions in simple systems, then goes on to introduce the core ideas of the renormalisation group.




Renormalization Group


Book Description

Scaling and self-similarity ideas and methods in theoretical physics have, in the last twenty-five years, coalesced into renormalization-group methods. This book analyzes, from a single perspective, some of the most important applications: the critical-point theory in classical statistical mechanics, the scalar quantum field theories in two and three space-time dimensions, and Tomonaga's theory of the ground state of one-dimensional Fermi systems. The dimension dependence is discussed together with the related existence of anomalies (in Tomonaga's theory and in 4 -e dimensions for the critical point). The theory of Bose condensation at zero temperature in three space dimensions is also considered. Attention is focused on results that can in principle be formally established from a mathematical point of view. The 4 -e dimensions theory, Bose condensation, as well as a few other statements are exceptions to this rule, because no complete treatment is yet available. However, the truly mathematical details are intentionally omitted and only referred to. This is done with the purpose of stressing the unifying conceptual structure rather than the technical differences or subtleties.




Introduction to Renormalization Group Methods in Physics


Book Description

This introduction to the renormalization group, an edited and corrected second edition, discusses examples from diverse areas of physics. Designed for a one-semester course for advanced graduate students, the treatment requires a solid background in classical mechanics, statistical mechanics, and quantum mechanics. The text begins with an examination of self-similarity and scale invariance, followed by chapters on the renormalization group approaches to chaos and percolation, renormalization group and critical phenomena, and an extensive treatment of the Ising model. Additional topics include mean field theory and the Gaussian fixed point, the spherical model and the 1/n expansion, the two-dimensional X-Y model and the Kosterlitz-Thouless transition, and other subjects. Each chapter is augmented by problems and references, and three helpful Appendixes supplement the text. AUTHOR: R. J. Creswick is Professor in the Department of Physics and Astronomy, University of South Carolina.




Renormalization


Book Description

This monograph is the first to present the recently discovered renormalization techniques for the Schrödinger and Dirac equations, providing a mathematically rigorous, yet simple and clear introduction to the subject. It develops field-theoretic techniques such as Feynman graph expansions and renormalization, taking pains to make all proofs as simple as possible by using generating function techniques throughout. Renormalization is performed by using an exact renormalization group differential equation, a technique that provides simple but complete proofs of the theorems.