Re-charting the Course


Book Description

Reports of the committees of the Presidential Task Force on Employment of Adults with Disabilities.







Promising Practices for Strengthening the Regional STEM Workforce Development Ecosystem


Book Description

U.S. strength in science, technology, engineering, and mathematics (STEM) disciplines has formed the basis of innovations, technologies, and industries that have spurred the nation's economic growth throughout the last 150 years. Universities are essential to the creation and transfer of new knowledge that drives innovation. This knowledge moves out of the university and into broader society in several ways â€" through highly skilled graduates (i.e. human capital); academic publications; and the creation of new products, industries, and companies via the commercialization of scientific breakthroughs. Despite this, our understanding of how universities receive, interpret, and respond to industry signaling demands for STEM-trained workers is far from complete. Promising Practices for Strengthening the Regional STEM Workforce Development Ecosystem reviews the extent to which universities and employers in five metropolitan communities (Phoenix, Arizona; Cleveland, Ohio; Montgomery, Alabama; Los Angeles, California; and Fargo, North Dakota) collaborate successfully to align curricula, labs, and other undergraduate educational experiences with current and prospective regional STEM workforce needs. This report focuses on how to create the kind of university-industry collaboration that promotes higher quality college and university course offerings, lab activities, applied learning experiences, work-based learning programs, and other activities that enable students to acquire knowledge, skills, and attributes they need to be successful in the STEM workforce. The recommendations and findings presented will be most relevant to educators, policy makers, and industry leaders.




The Work Ahead


Book Description

The world is in the midst of a transformation in the nature of work, as smart machines, artificial intelligence, new technologies, and global competition remake how people do their jobs and pursue their careers. The Work Ahead focuses on how to rebuild the links among work, opportunity, and economic security for all Americans.




Final Report and Recommendations


Book Description




Modernizing the Workforce Investment Act


Book Description







Caring for Our Seniors


Book Description




Future Directions for NSF Advanced Computing Infrastructure to Support U.S. Science and Engineering in 2017-2020


Book Description

Advanced computing capabilities are used to tackle a rapidly growing range of challenging science and engineering problems, many of which are compute- and data-intensive as well. Demand for advanced computing has been growing for all types and capabilities of systems, from large numbers of single commodity nodes to jobs requiring thousands of cores; for systems with fast interconnects; for systems with excellent data handling and management; and for an increasingly diverse set of applications that includes data analytics as well as modeling and simulation. Since the advent of its supercomputing centers, the National Science Foundation (NSF) has provided its researchers with state-of-the-art computing systems. The growth of new models of computing, including cloud computing and publically available by privately held data repositories, opens up new possibilities for NSF. In order to better understand the expanding and diverse requirements of the science and engineering community and the importance of a new broader range of advanced computing infrastructure, the NSF requested that the National Research Council carry out a study examining anticipated priorities and associated tradeoffs for advanced computing. Future Directions for NSF Advanced Computing Infrastructure to Support U.S. Science and Engineering in 2017-2020 provides a framework for future decision-making about NSF's advanced computing strategy and programs. It offers recommendations aimed at achieving four broad goals: (1) position the U.S. for continued leadership in science and engineering, (2) ensure that resources meet community needs, (3) aid the scientific community in keeping up with the revolution in computing, and (4) sustain the infrastructure for advanced computing.