Representation Surfaces for Physical Properties of Materials


Book Description

This textbook presents all the mathematical and physical concepts needed to visualize and understand representation surfaces, providing readers with a reliable and intuitive understanding of the behavior and properties of anisotropic materials, and a sound grasp of the directionality of material properties. They will learn how to extract quantitative information from representation surfaces, which encode tremendous amounts of information in a very concise way, making them especially useful in understanding higher order tensorial material properties (piezoelectric moduli, elastic compliance and rigidity, etc.) and in the design of applications based on these materials. Readers will also learn from scratch concepts on crystallography, symmetry and Cartesian tensors, which are essential for understanding anisotropic materials, their design and application. The book describes how to apply representation surfaces to a diverse range of material properties, making it a valuable resource for material scientists, mechanical engineers, and solid state physicists, as well as advanced undergraduates in Materials Science, Solid State Physics, Electronics, Optics, Mechanical Engineering, Composites and Polymer Science. Moreover, the book includes a wealth of worked-out examples, problems and exercises to help further understanding.




Properties of Materials


Book Description

Crystals are sometimes called 'Flowers of the Mineral Kingdom'. In addition to their great beauty, crystals and other textured materials are enormously useful in electronics, optics, acoustics and many other engineering applications. This richly illustrated text describes the underlying principles of crystal physics and chemistry, covering a wide range of topics and illustrating numerous applications in many fields of engineering using the most important materials today. Tensors, matrices, symmetry and structure-property relationships form the main subjects of the book. While tensors and matrices provide the mathematical framework for understanding anisotropy, on which the physical and chemical properties of crystals and textured materials often depend, atomistic arguments are also needed to quantify the property coefficients in various directions. The atomistic arguments are partly based on symmetry and partly on the basic physics and chemistry of materials. After introducing the point groups appropriate for single crystals, textured materials and ordered magnetic structures, the directional properties of many different materials are described: linear and nonlinear elasticity, piezoelectricity and electrostriction, magnetic phenomena, diffusion and other transport properties, and both primary and secondary ferroic behavior. With crystal optics (its roots in classical mineralogy) having become an important component of the information age, nonlinear optics is described along with the piexo-optics, magneto-optics, and analogous linear and nonlinear acoustic wave phenomena. Enantiomorphism, optical activity, and chemical anisotropy are discussed in the final chapters of the book.




Modern Physical Metallurgy


Book Description

Modern Physical Metallurgy, Fourth Edition explains the fundamental principles of physical metallurgy and their application, allowing its readers to understand the many important technological phenomena of the field. The book covers topics such as the molecular properties of metals; the different physical methods of metals and alloys; and the structure of alloys. Also covered are topics such as the deformation of metals and alloys; phase transformations; and related processes such as creep, fatigue, fracture, oxidation, and corrosion. The text is recommended for metallurgists, chemists, and engineers who would like to know more about the principles behind metallurgy and its application in different fields.




Lunar Sourcebook


Book Description

The only work to date to collect data gathered during the American and Soviet missions in an accessible and complete reference of current scientific and technical information about the Moon.




Physical Properties of Crystals


Book Description

First published in 1957, this classic study has been reissued in a paperback version that includes an additional chapter bringing the material up to date. The author formulates the physical properties of crystals systematically in tensor notation, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them. The mathematical groundwork is laid in a discussion of tensors of the first and second ranks. Tensors of higher ranks and matrix methods are then introduced as natural developments of the theory. A similar pattern is followed in discussing thermodynamic and optical aspects.




Chemical Properties of Material Surfaces


Book Description

A discussion of the adsorption of inorganics from aqueous solution on inorganic adsorbents. It emphasizes the relationship between adsorption and surface charging, highlighting simple and complex adsorption systems sorted by the adsorbent as well as the adsorbate. The author includes a comprehensive collection of pristine PZC of different materials - covering crystallographic structure, methods of preparation, impurities in the solid, temperature and ionic composition of the solution, experimental methods to determine PZC, and the correlation between zero points and other physical quantities.







High-Pressure Science and Technology


Book Description

High pressure has become a basic variable in many areas of science and engineering. It extends from disciplines of geophysics and astrophysics through chemistry and physics to those of modern biology, electrical and chemical engineering. This breadth has been recognized for some time, but it was not until the early 1960's that an international group of scientists and engineers established the Association Internationale for Research and Advancement of High Pressure Science and Technology (AIRAPT) for bringing these various aspects of high pressure together at an international conference. The First AIRAPT International High Pressure Conference was held in 1965 in France and has been convened at approximately two to three year intervals since that time. The past four AIRAPT International High Pressure Conferences have been held in Germany, Scotland, Japan and the U.S.S.R. Since the first meeting of this kind, our understanding of high pressure behavior of physical systems has increased greatly.




Geophysical Abstracts


Book Description




Image Understanding Workshop


Book Description

"The main theme of the 1988 workshop, the 18th in this DARPA sponsored series of meetings on Image Understanding and Computer Vision, is to cover new vision techniques in prototype vision systems for manufacturing, navigation, cartography, and photointerpretation." P. v.