Representation Theory of Reductive Groups
Author : Peter C. Trombi
Publisher :
Page : 320 pages
File Size : 22,57 MB
Release : 1983
Category : Representations of groups
ISBN :
Author : Peter C. Trombi
Publisher :
Page : 320 pages
File Size : 22,57 MB
Release : 1983
Category : Representations of groups
ISBN :
Author : Jens Carsten Jantzen
Publisher : American Mathematical Soc.
Page : 594 pages
File Size : 27,44 MB
Release : 2003
Category : Mathematics
ISBN : 082184377X
Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.
Author : Marc Cabanes
Publisher : Cambridge University Press
Page : 457 pages
File Size : 39,35 MB
Release : 2004-01-29
Category : Mathematics
ISBN : 0521825172
Publisher Description
Author : Roger W. Carter
Publisher : Cambridge University Press
Page : 203 pages
File Size : 16,38 MB
Release : 1998-09-03
Category : Mathematics
ISBN : 0521643252
This volume provides a very accessible introduction to the representation theory of reductive algebraic groups.
Author : Pavel I. Etingof
Publisher : American Mathematical Soc.
Page : 240 pages
File Size : 25,27 MB
Release : 2011
Category : Mathematics
ISBN : 0821853511
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
Author : David A. Vogan
Publisher : Princeton University Press
Page : 324 pages
File Size : 10,70 MB
Release : 1987-10-21
Category : Mathematics
ISBN : 9780691084824
This book is an expanded version of the Hermann Weyl Lectures given at the Institute for Advanced Study in January 1986. It outlines some of what is now known about irreducible unitary representations of real reductive groups, providing fairly complete definitions and references, and sketches (at least) of most proofs. The first half of the book is devoted to the three more or less understood constructions of such representations: parabolic induction, complementary series, and cohomological parabolic induction. This culminates in the description of all irreducible unitary representation of the general linear groups. For other groups, one expects to need a new construction, giving "unipotent representations." The latter half of the book explains the evidence for that expectation and suggests a partial definition of unipotent representations.
Author : Monica Nevins
Publisher : Birkhäuser
Page : 0 pages
File Size : 20,47 MB
Release : 2016-01-06
Category : Mathematics
ISBN : 9783319234427
Over the last forty years, David Vogan has left an indelible imprint on the representation theory of reductive groups. His groundbreaking ideas have lead to deep advances in the theory of real and p-adic groups, and have forged lasting connections with other subjects, including number theory, automorphic forms, algebraic geometry, and combinatorics. Representations of Reductive Groups is an outgrowth of the conference of the same name, dedicated to David Vogan on his 60th birthday, which took place at MIT on May 19-23, 2014. This volume highlights the depth and breadth of Vogan's influence over the subjects mentioned above, and point to many exciting new directions that remain to be explored. Notably, the first article by McGovern and Trapa offers an overview of Vogan's body of work, placing his ideas in a historical context. Contributors: Pramod N. Achar, Jeffrey D. Adams, Dan Barbasch, Manjul Bhargava, Cédric Bonnafé, Dan Ciubotaru, Meinolf Geck, William Graham, Benedict H. Gross, Xuhua He, Jing-Song Huang, Toshiyuki Kobayashi, Bertram Kostant, Wenjing Li, George Lusztig, Eric Marberg, William M. McGovern, Wilfried Schmid, Kari Vilonen, Diana Shelstad, Peter E. Trapa, David A. Vogan, Jr., Nolan R. Wallach, Xiaoheng Wang, Geordie Williamson
Author :
Publisher : Elsevier
Page : 357 pages
File Size : 45,95 MB
Release : 1996-09-27
Category : Mathematics
ISBN : 0080526950
This book is a compilation of several works from well-recognized figures in the field of Representation Theory. The presentation of the topic is unique in offering several different points of view, which should makethe book very useful to students and experts alike.Presents several different points of view on key topics in representation theory, from internationally known experts in the field
Author : Brian Conrad
Publisher : Cambridge University Press
Page : 691 pages
File Size : 24,69 MB
Release : 2015-06-04
Category : Mathematics
ISBN : 1107087236
This monograph provides a comprehensive treatment of the theory of pseudo-reductive groups and gives their classification in a usable form. This second edition has been revised and updated, with Chapter 9 being completely rewritten via the useful new notion of 'minimal type' for pseudo-reductive groups.
Author : J. Adams
Publisher : Springer Science & Business Media
Page : 331 pages
File Size : 39,26 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 146120383X
This monograph explores the geometry of the local Langlands conjecture. The conjecture predicts a parametrizations of the irreducible representations of a reductive algebraic group over a local field in terms of the complex dual group and the Weil-Deligne group. For p-adic fields, this conjecture has not been proved; but it has been refined to a detailed collection of (conjectural) relationships between p-adic representation theory and geometry on the space of p-adic representation theory and geometry on the space of p-adic Langlands parameters. This book provides and introduction to some modern geometric methods in representation theory. It is addressed to graduate students and research workers in representation theory and in automorphic forms.