Linear Representations of Groups


Book Description

This book gives an exposition of the fundamentals of the theory of linear representations of finite and compact groups, as well as elements of the the ory of linear representations of Lie groups. As an application we derive the Laplace spherical functions. The book is based on lectures that I delivered in the framework of the experimental program at the Mathematics-Mechanics Faculty of Moscow State University and at the Faculty of Professional Skill Improvement. My aim has been to give as simple and detailed an account as possible of the problems considered. The book therefore makes no claim to completeness. Also, it can in no way give a representative picture of the modern state of the field under study as does, for example, the monograph of A. A. Kirillov [3]. For a more complete acquaintance with the theory of representations of finite groups we recommend the book of C. W. Curtis and I. Reiner [2], and for the theory of representations of Lie groups, that of M. A. Naimark [6]. Introduction The theory of linear representations of groups is one of the most widely ap plied branches of algebra. Practically every time that groups are encountered, their linear representations play an important role. In the theory of groups itself, linear representations are an irreplaceable source of examples and a tool for investigating groups. In the introduction we discuss some examples and en route we introduce a number of notions of representation theory. O.







Groups and Representations


Book Description

A concise treatment of topics from group theory and representation theory for use in a one-term course. Focussing on the non-commutative side of the field, this advanced textbook emphasizes the general linear group as the most important group and example. Readers are expected to be familiar with groups, rings, and fields, and to have a solid knowledge of linear algebra. Close to 200 exercises of varying difficulty serve both to reinforce the main concept of the text and to introduce the reader to additional topics.




Linear Algebraic Groups and Their Representations


Book Description

* Brings together a wide variety of themes under a single unifying perspective The proceedings of a conference on Linear algebraic Groups and their Representations - the text gets to grips with the fundamental nature of this subject and its interaction with a wide variety of active areas in mathematics and physics.




A Course in Finite Group Representation Theory


Book Description

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.




Representations of Algebraic Groups


Book Description

Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.




Representations of Linear Groups


Book Description

This is an elementary introduction to the representation theory of real and complex matrix groups. The text is written for students in mathematics and physics who have a good knowledge of differential/integral calculus and linear algebra and are familiar with basic facts from algebra, number theory and complex analysis. The goal is to present the fundamental concepts of representation theory, to describe the connection between them, and to explain some of their background. The focus is on groups which are of particular interest for applications in physics and number theory (e.g. Gell-Mann's eightfold way and theta functions, automorphic forms). The reader finds a large variety of examples which are presented in detail and from different points of view.




Introduction to Representation Theory


Book Description

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.




Linear and Projective Representations of Symmetric Groups


Book Description

The representation theory of symmetric groups is one of the most beautiful, popular and important parts of algebra, with many deep relations to other areas of mathematics. Kleshchev describes a new approach to the subject, based on the recent work of Lascoux, Leclerc, Thibon, Ariki, Grojnowski and Brundan, as well as his own




Linear Representations of the Lorentz Group


Book Description

Linear Representations of the Lorentz Group is a systematic exposition of the theory of linear representations of the proper Lorentz group and the complete Lorentz group. This book consists of four chapters. The first two chapters deal with the basic material on the three-dimensional rotation group, on the complete Lorentz group and the proper Lorentz group, as well as the theory of representations of the three-dimensional rotation group. These chapters also provide the necessary basic information from the general theory of group representations. The third chapter is devoted to the representations of the proper Lorentz group and the complete Lorentz group, while the fourth chapter examines the theory of invariant equations. This book will prove useful to mathematicians and students.