Research in Collegiate Mathematics Education III


Book Description

Volume 3 of Research in Collegiate Mathematics Education (RCME) presents state-of-the-art research on understanding, teaching and learning mathematics at the post-secondary level. This volume contains information on methodology and research concentrating on these areas of student learning: Problem Solving; Understanding Concepts; and Understanding Proofs.







Research in Collegiate Mathematics Education


Book Description

The field of research in collegiate mathematics education has grown rapidly over the past twenty-five years. Many people are convinced that improvement in mathematics education can only come with a greater understanding of what is involved when a student tries to learn mathematics and how pedagogy can be more directly related to the learning process. Today there is a substantial body of work and a growing group of researchers addressing both basic and applied issues of mathematics education at the collegiate level. This volume is testimony to the growth of the field. The intention is to publish volumes on this topic annually, doing more or less as the level of growth dictates. The introductory articles, survey papers, and current research that appear in this first issue convey some aspects of the state of the art. The book is aimed at researchers in collegiate mathematics education and teachers of college-level mathematics courses who may find ideas and results that are useful to them in their practice of teaching, as well as the wider community of scholars interested in the intellectual issues raised by the problem of learning mathematics.




Research in Collegiate Mathematics Education VII


Book Description

The present volume of Research in Collegiate Mathematics Education, like previous volumes in this series, reflects the importance of research in mathematics education at the collegiate level. The editors in this series encourage communication between mathematicians and mathematics educators, and as pointed out by the International Commission of Mathematics Instruction (ICMI), much more work is needed in concert with these two groups. Indeed, editors of RCME are aware of this need and the articles published in this series are in line with that goal. Nine papers constitute this volume. The first two examine problems students experience when converting a representation from one particular system of representations to another. The next three papers investigate students learning about proofs. In the next two papers, the focus is instructor knowledge for teaching calculus. The final two papers in the volume address the nature of ``conception'' in mathematics. Whether they are specialists in education or mathematicians interested in finding out about the field, readers will obtain new insights about teaching and learning and will take away ideas that they can use.




Research in Collegiate Mathematics Education IV


Book Description

This fourth volume of Research in Collegiate Mathematics Education (RCME IV) reflects the themes of student learning and calculus. Included are overviews of calculus reform in France and in the U.S. and large-scale and small-scale longitudinal comparisons of students enrolled in first-year reform courses and in traditional courses. The work continues with detailed studies relating students' understanding of calculus and associated topics. Direct focus is then placed on instruction and student comprehension of courses other than calculus, namely abstract algebra and number theory. The volume concludes with a study of a concept that overlaps the areas of focus, quantifiers. The book clearly reflects the trend towards a growing community of researchers who systematically gather and distill data regarding collegiate mathematics' teaching and learning. This series is published in cooperation with the Mathematical Association of America.




Research in Collegiate Mathematics Education VI


Book Description

The sixth volume of Research in Collegiate Mathematics Education presents state-of-the-art research on understanding, teaching, and learning mathematics at the postsecondary level. The articles advance our understanding of collegiate mathematics education while being readable by a wide audience of mathematicians interested in issues affecting their own students. This is a collection of useful and informative research regarding the ways our students think about and learn mathematics.The volume opens with studies on students' experiences with calculus reform and on the effects of concept-based calculus instruction. The next study uses technology and the van Hiele framework to help students construct concept images of sequential convergence. The volume continues with studies ondeveloping and assessing specific competencies in real analysis, on introductory complex analysis, and on using geometry in teaching and learning linear algebra. It closes with a study on the processes used in proof construction and another on the transition to graduate studies in mathematics. Whether they are specialists in education or mathematicians interested in finding out about the field, readers will obtain new insights about teaching and learning and will take away ideas that they canuse. Information for our distributors: This series is published in cooperation with the Mathematical Association of America.




Research in Collegiate Mathematics Education II


Book Description

The field of research in collegiate mathematics education has grown rapidly over the past 25 years. Many people are convinced that improvement in mathematics education can only come with a greater understanding of what is involved when a student tries to learn mathematics and how pedagogy can be more directly related to the learning process. Today there is a substantial body of work and a growing group of researchers addressing both basic and applied issues of mathematics education at the collegiate level. This second volume in Research in Collegiate Mathematics Education begins with a paper that attends to methodology and closes with a list of questions. The lead-off paper describes a distinctive approach to research on key concepts in the undergraduate mathematics curriculum. This approach is distinguished from others in several ways, especially its integration of research and instruction. The papers in this volume exhibit a large diversity in methods and purposes, ranging from historical studies, to theoretical examinations of the role of gender in mathematics education, to practical evaluations of particular practices and circumstances. As in RCME I, this volume poses a list of questions to the reader related to undergraduate mathematics education. The eighteen questions were raised at the first Oberwolfach Conference in Undergraduate Mathematics Education, which was held in the Fall of 1995, and are related to both research and curriculum. This series is published in cooperation with the Mathematical Association of America.




Teaching Mathematics in Colleges and Universities: Case Studies for Today's Classroom


Book Description

Progress in mathematics frequently occurs first by studying particular examples and then by generalizing the patterns that have been observed into far-reaching theorems. Similarly, in teaching mathematics one often employs examples to motivate a general principle or to illustrate its use. This volume uses the same idea in the context of learning how to teach: by analyzing particular teaching situations, one can develop broadly applicable teaching skills useful for the professional mathematician. These teaching situations are the case studies of the title. Just as a good mathematician seeks both to understand the details of a particular problem and to put it in a broader context, the examples presented here are chosen to offer a serious set of detailed teaching issues and to afford analysis from a broad perspective. Each case raises a variety of pedagogical and communication issues that may be explored either individually or in a group facilitated by a faculty member. The methodology of case studies is widely used in areas such as business and law. The consideration of the mathematics cases presented here should help readers to develop teaching skills for their own classrooms.




Second Handbook of Research on Mathematics Teaching and Learning


Book Description

The audience remains much the same as for the 1992 Handbook, namely, mathematics education researchers and other scholars conducting work in mathematics education. This group includes college and university faculty, graduate students, investigators in research and development centers, and staff members at federal, state, and local agencies that conduct and use research within the discipline of mathematics. The intent of the authors of this volume is to provide useful perspectives as well as pertinent information for conducting investigations that are informed by previous work. The Handbook should also be a useful textbook for graduate research seminars. In addition to the audience mentioned above, the present Handbook contains chapters that should be relevant to four other groups: teacher educators, curriculum developers, state and national policy makers, and test developers and others involved with assessment. Taken as a whole, the chapters reflects the mathematics education research community's willingness to accept the challenge of helping the public understand what mathematics education research is all about and what the relevance of their research fi ndings might be for those outside their immediate community.




Readings in Innovative Ideas in Teaching Collegiate Mathematics


Book Description

Professional mathematicians from the US and Britain address practical aspects of innovative ideas in teaching mathematics, but shy away from either theoretical or historical perspectives on any particular pedagogical approaches. They set out the pros and cons of implementing creative instructional styles in order to share their insights with teachers at all educational levels. Annotation copyrighted by Book News, Inc., Portland, OR.