Research in Tolerancing


Book Description




Research in Tolerancing


Book Description

This book provides an overview of current subjects and research areas in tolerance management, targeting researchers who are working in the field of tolerance management or who wish to enter this domain. Experts from different areas of tolerance management will provide insights into their research fields, highlighting both the current state of research and emerging challenges. The book comprises four parts, which address different aspects of tolerance management. Part 1 is dedicated to the various interconnected tolerance management activities, the role of Key Characteristics, early tolerance management, and Robust Design. Part 2 deals with advanced tolerance analysis and tolerance synthesis methods, with a focus on tolerances in mechanisms as well as tolerance-cost optimization. In Part 3, tolerance analysis methods for non-geometrical Key Characteristics are presented, covering use cases such as rolling bearings and the validation of functional limiting positions. Finally, Part 4 deals with process- and operation-oriented tolerance management, taking a closer look at tolerance management in additive manufacturing, composite structures, and Tolerance Management 4.0. For the first time, tolerance management, its diverse subject areas, the current state of knowledge, and the upcoming challenges are brought together in such a holistic way in one edited volume. With this anthology, researchers and experts worldwide are able to gain deep insights into tolerance management and its various topics, as well as discover the most current aspects and methods of tolerancing research.




Geometric Design Tolerancing: Theories, Standards and Applications


Book Description

The importance of proper geometric dimensioning and tolerancing as a means of expressing the designer's functional intent and controlling the inevitable geometric and dimensional variations of mechanical parts and assemblies, is becoming well recognized. The research efforts and innovations in the field of tolerancing design, the development of supporting tools, techniques and algorithms, and the significant advances in computing software and hardware all have contributed to its recognition as a viable area of serious scholarly contributions. The field of tolerancing design is successfully making the transition to maturity where deeper insights and sound theories are being developed to offer explanations, and reliable implementations are introduced to provide solutions. Machine designers realized very early that manufacturing processes do not produce the nominal dimensions of designed parts. The notion of associating a lower and an upper limit, referred to as tolerances, with each dimen sion was introduced. Tolerances were specified to ensure the proper function of mating features. Fits of mating features included clearances, location fits, and interference fits, with various sub-grades in each category assigned a tolerance value depending on the nominal size of the mating features. During the inspection process, a part is rejected if a dimension fell outside the specified range. As the accuracy requirements in assemblies became tighter, designers had to consider other critical dimensions and allocate tolerances to them in order to ensure the assembly's functionality.




Advanced Tolerancing Techniques


Book Description

This is the first book to provide a comprehensive coverage of new developments in geometric dimensional tolerancing and statistical tolerancing, and to focus on the use of these techniques in a CAD/CAM/CMM environment. The authors explore and explain tolerancing from its history and fundamentals to state-of-the-art techniques. They also describe specialized applications of tolerancing in particular industries, inclduing automobiles, electronics and aerospace.




Global Consistency of Tolerances


Book Description

This book contains selected contributions from the 6th CIRP International Seminar on Computer-Aided Tolerancing, which was held on 22-24 March, 1999, at the University of Twente, Enschede, The Netherlands. This volume presents the theory and application of consistent tolerancing. Until recently CADCAM systems did not even address the issue of tolerances and focused purely on nominal geometry. Therefore, CAD data was only of limited use for the downstream processes. The latest generation of CADCAM systems incorporates functionality for tolerance specification. However, the lack of consistency in existing tolerancing standards and everyday tolerancing practice still lead to ill-defined products, excessive manufacturing costs and unexpected failures. Research and improvement of education in tolerancing are hot items today. Global Consistency of Tolerances gives an excellent overview of the recent developments in the field of Computer-Aided Tolerancing, including such topics as tolerance specification; tolerance analysis; tolerance synthesis; tolerance representation; geometric product specification; functional product analysis; statistical tolerancing; education of tolerancing; computational metrology; tolerancing standards; and industrial applications and CAT systems. This book is well suited to users of new generation CADCAM systems who want to use the available tolerancing possibilities properly. It can also be used as a starting point for research activities.




Computer-aided Tolerancing


Book Description

Theory and practice of tolerances are very important for designing and manufacturing engineering artifacts on a rational basis. Tolerance specifies a degree of "discrepancy" between an idealized object and its physical realization. Such discrepancy inevitably comes into our product realization processes because of practical cost consideration or our inability to fully control manufacturing processes. Major product and production characteristics which are affected by tolerances are product quality and cost. For achieving high precision machines tight tolerance specification is necessary, but this will normally increase product cost. In order to optimally compromise the conflicting requirements of quality and cost, it is essential to take into account of the total product life cycle throughout product planning, design, manufacturing, maintenance and recycling. For example, in order to construct durable products under severe working conditions, low sensitivity of product functionality with respect to tolerances is required. In future, re-use of components or parts will become important, and tolerance synthesis with respect to this aspect will be an interesting future research topics.




Geometric Tolerances


Book Description

Geometric tolerances are changing the way we design and manufacture industrial products. Geometric Tolerances covers their impact on the world of design and production, highlighting new perspectives, possibilities, current issues and future challenges. The topics covered are designed to be relevant to readers from a variety of backgrounds, ranging from product designers and manufacturers to quality inspection engineers and quality engineers involved in statistical process monitoring. Areas included are: • selection of appropriate geometric tolerances and how they stack up in assembled products; • inspection of parts subjected to geometric tolerancing from the macro to the micro and sub-micro scales; and • enhancement of efficiency and efficacy of quality monitoring. Geometric Tolerances provides the reader with the most recent scientific research in the field, as well as with a significant amount of real-life industrial case studies, delivering a multidisciplinary, synoptic view of one of the hottest and most strategic topics in industrial production.







Geometric Dimensioning and Tolerancing


Book Description

"This book shows how to interpret design drawings and CAD representations of product definitions that use the ASME Y14.5-2009 Standard. It also explains step-by-step procedures to apply the new Y14.5 practices and allow dimensioning and tolerancing professionals to express their design requirements more clearly. The results are that: product representations are able to be more specific in conveying tolerancing needs, products can be more easily manufactured, and appropriate inspection techniques are clarified."--Back cover.




Computer Methods for Tolerance Design


Book Description

This book describes recent research advances and computer tools that can be applied in the determination of geometric tolerances. A framework for tolerance synthesis is developed and used with artificial intelligence techniques to provide computer methods for both analysis and synthesis of geometric tolerance specifications. Tolerance primitives, based on a sound theory of tolerancing, are used to represent tolerance relationships or links between geometric entities and functional requirements. Algorithms are developed for the determination of boundedness and the measurement of sufficiency. A detailed constraint network is used to represent tolerance relations for a part under design and provide for the composition of tolerance specifications.