Research on Chemical Mechanical Polishing Mechanism of Novel Diffusion Barrier Ru for Cu Interconnect


Book Description

This thesis addresses selected unsolved problems in the chemical mechanical polishing process (CMP) for integrated circuits using ruthenium (Ru) as a novel barrier layer material. Pursuing a systematic approach to resolve the remaining critical issues in the CMP, it first investigates the tribocorrosion properties and the material removal mechanisms of copper (Cu) and Ru in KIO4-based slurry. The thesis subsequently studies Cu/Ru galvanic corrosion from a new micro and in-situ perspective, and on this basis, seeks ways to mitigate corrosion using different slurry additives. The findings presented here constitute a significant advance in fundamental and technical investigations into the CMP, while also laying the groundwork for future research.




Chemistry in Microelectronics


Book Description

Microelectronics is a complex world where many sciences need to collaborate to create nano-objects: we need expertise in electronics, microelectronics, physics, optics and mechanics also crossing into chemistry, electrochemistry, as well as biology, biochemistry and medicine. Chemistry is involved in many fields from materials, chemicals, gases, liquids or salts, the basics of reactions and equilibrium, to the optimized cleaning of surfaces and selective etching of specific layers. In addition, over recent decades, the size of the transistors has been drastically reduced while the functionality of circuits has increased. This book consists of five chapters covering the chemicals and sequences used in processing, from cleaning to etching, the role and impact of their purity, along with the materials used in “Front End Of the Line” which corresponds to the heart and performance of individual transistors, then moving on to the “Back End Of the Line” which is related to the interconnection of all the transistors. Finally, the need for specific functionalization also requires key knowledge on surface treatments and chemical management to allow new applications. Contents 1. Chemistry in the “Front End of the Line” (FEOL): Deposits, Gate Stacks, Epitaxy and Contacts, François Martin, Jean-Michel Hartmann, Véronique Carron and Yannick Le Tiec. 2. Chemistry in Interconnects, Vincent Jousseaume, Paul-Henri Haumesser, Carole Pernel, Jeffery Butterbaugh, Sylvain Maîtrejean and Didier Louis. 3. The Chemistry of Wet Surface Preparation: Cleaning, Etching and Drying, Yannick Le Tiec and Martin Knotter. 4. The Use and Management of Chemical Fluids in Microelectronics, Christiane Gottschalk, Kevin Mclaughlin, Julie Cren, Catherine Peyne and Patrick Valenti. 5. Surface Functionalization for Micro- and Nanosystems: Application to Biosensors, Antoine Hoang, Gilles Marchand, Guillaume Nonglaton, Isabelle Texier-Nogues and Francoise Vinet. About the Authors Yannick Le Tiec is a technical expert at CEA-Leti, Minatec since 2002. He is a CEA-Leti assignee at IBM, Albany (NY) to develop the advanced 14 nm CMOS node and the FDSOI technology. He held different technical positions from the advanced 300 mm SOI CMOS pilot line to different assignments within SOITEC for advanced wafer development and later within INES to optimize solar cell ramp-up and yield. He has been part of the ITRS Front End technical working group at ITRS since 2008.




Advances in Chemical Mechanical Planarization (CMP)


Book Description

Advances in Chemical Mechanical Planarization (CMP), Second Edition provides the latest information on a mainstream process that is critical for high-volume, high-yield semiconductor manufacturing, and even more so as device dimensions continue to shrink. The second edition includes the recent advances of CMP and its emerging materials, methods, and applications, including coverage of post-CMP cleaning challenges and tribology of CMP. This important book offers a systematic review of fundamentals and advances in the area. Part one covers CMP of dielectric and metal films, with chapters focusing on the use of current and emerging techniques and processes and on CMP of various materials, including ultra low-k materials and high-mobility channel materials, and ending with a chapter reviewing the environmental impacts of CMP processes. New content addressed includes CMP challenges with tungsten, cobalt, and ruthenium as interconnect and barrier films, consumables for ultralow topography and CMP for memory devices. Part two addresses consumables and process control for improved CMP and includes chapters on CMP pads, diamond disc pad conditioning, the use of FTIR spectroscopy for characterization of surface processes and approaches for defection characterization, mitigation, and reduction. Advances in Chemical Mechanical Planarization (CMP), Second Edition is an invaluable resource and key reference for materials scientists and engineers in academia and R&D. - Reviews the most relevant techniques and processes for CMP of dielectric and metal films - Includes chapters devoted to CMP for current and emerging materials - Addresses consumables and process control for improved CMP, including post-CMP




Atomic Layer Deposition for Semiconductors


Book Description

Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.




Noble and Precious Metals


Book Description

The use of copper, silver, gold and platinum in jewelry as a measure of wealth is well known. This book contains 19 chapters written by international authors on other uses and applications of noble and precious metals (copper, silver, gold, platinum, palladium, iridium, osmium, rhodium, ruthenium, and rhenium). The topics covered include surface-enhanced Raman scattering, quantum dots, synthesis and properties of nanostructures, and its applications in the diverse fields such as high-tech engineering, nanotechnology, catalysis, and biomedical applications. The basis for these applications is their high-free electron concentrations combined with high-temperature stability and corrosion resistance and methods developed for synthesizing nanostructures. Recent developments in all these areas with up-to-date references are emphasized.




Metallization


Book Description

This title covers fundemental concepts, properties and applicabilities of metals and alloys for use in various metallization schemes. Metallizations form the key components on electronic circuits - controlling device properties and providing power and device interconnections with the outside world or with other devices. The recent advent of submicron dimensions and increasingly faster devices in the semiconductor have challenged researchers to keep metallization schemes in line with new demanding requirements.




Advances in CMP Polishing Technologies


Book Description

CMP and polishing are the most precise processes used to finish the surfaces of mechanical and electronic or semiconductor components. Advances in CMP/Polishing Technologies for Manufacture of Electronic Devices presents the latest developments and technological innovations in the field - making cutting-edge R&D accessible to the wider engineering community. Most of the applications of these processes are kept as confidential as possible (proprietary information), and specific details are not seen in professional or technical journals and magazines. This book makes these processes and applications accessible to a wider industrial and academic audience. Building on the fundamentals of tribology - the science of friction, wear and lubrication - the authors explore the practical applications of CMP and polishing across various market sectors. Due to the high pace of development of the electronics and semiconductors industry, many of the presented processes and applications come from these industries. Demystifies scientific developments and technological innovations, opening them up for new applications and process improvements in the semiconductor industry and other areas of precision engineering Explores stock removal mechanisms in CMP and polishing, and the challenges involved in predicting the outcomes of abrasive processes in high-precision environments The authors bring together the latest innovations and research from the USA and Japan




Chemical Mechanical Planarization of Microelectronic Materials


Book Description

Chemical Mechanical Planarization (CMP) plays an important role in today's microelectronics industry. With its ability to achieve global planarization, its universality (material insensitivity), its applicability to multimaterial surfaces, and its relative cost-effectiveness, CMP is the ideal planarizing medium for the interlayered dielectrics and metal films used in silicon integrated circuit fabrication. But although the past decade has seen unprecedented research and development into CMP, there has been no single-source reference to this rapidly emerging technology-until now. Chemical Mechanical Planarization of Microelectronic Materials provides engineers and scientists working in the microelectronics industry with unified coverage of both the fundamental mechanisms and engineering applications of CMP. Authors Steigerwald, Murarka, and Gutmann-all leading CMP pioneers-provide a historical overview of CMP, explain the various chemical and mechanical concepts involved, describe CMP materials and processes, review the latest scientific data on CMP worldwide, and offer examples of its uses in the microelectronics industry. They provide detailed coverage of the CMP of various materials used in the making of microcircuitry: tungsten, aluminum, copper, polysilicon, and various dielectric materials, including polymers. The concluding chapter describes post-CMP cleaning techniques, and most chapters feature problem sets to assist readers in developing a more practical understanding of CMP. The only comprehensive reference to one of the fastest growing integrated circuit manufacturing technologies, Chemical Mechanical Planarization of Microelectronic Materials is an important resource for research scientists and engineers working in the microelectronics industry. An indispensable resource for scientists and engineers working in the microelectronics industry Chemical Mechanical Planarization of Microelectronic Materials is the only comprehensive single-source reference to one of the fastest growing integrated circuit manufacturing technologies. It provides engineers and scientists who work in the microelectronics industry with unified coverage of both the fundamental mechanisms and engineering applications of CMP, including: * The history of CMP * Chemical and mechanical underpinnings of CMP * CMP materials and processes * Applications of CMP in the microelectronics industry * The CMP of tungsten, aluminum, copper, polysilicon, and various dielectrics, including polymers used in integrated circuit fabrication * Post-CMP cleaning techniques * Chapter-end problem sets are also included to assist readers in developing a practical understanding of CMP.




Chemical-Mechanical Planarization of Semiconductor Materials


Book Description

This book contains a comprehensive review of CMP (Chemical-Mechanical Planarization) technology, one of the most exciting areas in the field of semiconductor technology. It contains detailed discussions of all aspects of the technology, for both dielectrics and metals. The state of polishing models and their relation to experimental results are covered. Polishing tools and consumables are also covered. The leading edge issues of damascene and new dielectrics as well as slurryless technology are discussed.




Physics of Surfaces and Interfaces


Book Description

This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.