Photovoltaic Module Reliability


Book Description

Provides practical guidance on the latest quality assurance and accelerated stress test methods for improved long-term performance prediction of PV modules This book has been written from a historical perspective to guide readers through how the PV industry learned what the failure and degradation modes of PV modules were, how accelerated tests were developed to cause the same failures and degradations in the laboratory, and then how these tests were used as tools to guide the design and fabrication of reliable and long-life modules. Photovoltaic Module Reliability starts with a brief history of photovoltaics, discussing some of the different types of materials and devices used for commercial solar cells. It then goes on to offer chapters on: Module Failure Modes; Development of Accelerated Stress Tests; Qualification Testing; and Failure Analysis Tools. Next, it examines the use of quality management systems to manufacture PV modules. Subsequent chapters cover the PVQAT Effort; the Conformity Assessment and IECRE; and Predicting PV Module Service Life. The book finishes with a look at what the future holds for PV. A comprehensive treatment of current photovoltaic (PV) technology reliability and necessary improvement to become a significant part of the electric utility supply system Well documented with experimental and practical cases throughout, enhancing relevance to both scientific community and industry Timely contribution to the harmonization of methodological aspects of PV reliability evaluation with test procedures implemented to certify PV module quality Written by a leading international authority in PV module reliability Photovoltaic Module Reliability is an excellent book for anyone interested in PV module reliability, including those working directly on PV module and system reliability and preparing to purchase modules for deployment.




Solar Energy Research Institute for India and the United States (SERIIUS)


Book Description

This book describes the development, functioning, and results of a successful binational program to promote significant scientific advances in Earth-abundant photovoltaics (PV) and concentrated solar power (CSP), advanced process/manufacturing technologies, multiscale modeling and reliability testing, and analysis of integrated solar energy systems. SERIIUS is a consortium between India and the United States dedicated to developing new solar technologies and assessing their potential impact in the two countries. The consortium consists of nearly 50 institutions including academia, national laboratories, and industry, with the goal of developing significant new technologies in all areas of solar deployment. In addition, the program focused on workforce development through graduate students, post-doctoral students, and an international exchange program. Particular emphasis was placed on the following efforts: Creating disruptive technologies in PV and CSP through high-impact fundamental and applied research and development (R&D). Identifying and quantifying the critical technical, economic, and policy issues for solar energy development and deployment in India. Overcoming barriers to technology transfer by teaming research institutions and industry in an effective project structure. Building a new platform for binational collaboration using a formalized R&D project structure, along with effective management, coordination, and decision processes. Creating a sustainable network and workforce development program from which to build large collaborations and fostering a collaborative culture and outreach programs. This includes using existing and new methodologies for collaboration based on advanced electronic and web-based communication to facilitate functional international teams. The book summarizes the general lessons learned from these experiences.




Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules


Book Description

Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules describes the durability and reliability behavior of polymers used in Si-photovoltaic modules and systems, particularly in terms of physical aging and degradation process/mechanisms, characterization methods, accelerated exposure chamber and testing, module level testing, and service life prediction. The book compares polymeric materials to traditional materials used in solar applications, explaining the degradation pathways of the different elements of a photovoltaic module, including encapsulant, front sheet, back sheet, wires and connectors, adhesives, sealants, and more. In addition, users will find sections on the tests needed for the evaluation of polymer degradation and aging, as well as accelerated tests to aid in materials selection. As demand for photovoltaics continues to grow globally, with polymer photovoltaics offering significantly lower production costs compared to earlier approaches, this book will serve as a welcome resource on new avenues.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.







Energy


Book Description




Solar Energy Update


Book Description




Photovoltaic Modules


Book Description

Photovoltaic modules have developed into mass products sold in billions and applied all over the world enabling a renewable energy supply. Reliability and sustainability are key factors for the success of Photovoltaics in all climate zones. The second edition of this interdisciplinary book provides insight into relevant environmental aspects (climates), material and module testing equipment and approaches, service life prediction modelling and standardisation of wafer-based photovoltaic modules. The book also addresses recent research and developments on the sustainability assessment of photovoltaic modules including end of life measures and legislation.