Microstructure and Wear of Materials


Book Description

This new book will be useful not only to practising engineers and scientists, but also to advanced students interested in wear. It reviews our current understanding of the influence of microstructural elements and physical properties of materials (metals, polymers, ceramics and composites) on wear.The introductory chapters describe the relation between microstructure and mechanical properties of materials, surfaces in contact and the classification of wear processes. The following chapters are concerned with wear modes of great practical interest such as grooving wear, sliding wear, rolling-sliding wear and erosive wear. Our present understanding of abrasion, adhesion, surface fatigue and tribochemical reactions as the relevant wear mechanisms is discussed, and new wear models are presented. In addition to extensive experimental results, sketches have been widely used for clarifying the physical events.







Engineering Tribology


Book Description

As with the previous edition, the third edition of Engineering Tribology provides a thorough understanding of friction and wear using technologies such as lubrication and special materials. Tribology is a complex topic with its own terminology and specialized concepts, yet is vitally important throughout all engineering disciplines, including mechanical design, aerodynamics, fluid dynamics and biomedical engineering. This edition includes updated material on the hydrodynamic aspects of tribology as well as new advances in the field of biotribology, with a focus throughout on the engineering applications of tribology.This book offers an extensive range if illustrations which communicate the basic concepts of tribology in engineering better than text alone. All chapters include an extensive list of references and citations to facilitate further in-depth research and thorough navigation through particular subjects covered in each chapter. Includes newly devised end-of-chapter problems Provides a comprehensive overview of the mechanisms of wear, lubrication and friction in an accessible manner designed to aid non-specialists Gives a reader-friendly approach to the subject using a graphic illustrative method to break down the typically complex problems associated with tribology




Wear of Metals


Book Description

Wear of Metals deals with the mechanisms underlying the wear of metals such as brass, cast iron, and aluminum-silicon alloys. Topics covered include surface topography, contact of solids, and friction, along with the effect of sliding and rolling resistance. Fretting, wear under rolling contact, and the friction and wear of polymers are also discussed. Comprised of 27 chapters, this volume begins with an overview of adhesion, types of wear, and friction and wear experiments. The following chapters explore surface topography and the contact (single and multiple) of solids; molecular theory of friction and wear; running-in wear and abrasive wear; and surface contaminants. An oxidational hypothesis of wear is then presented, and the phenomenology of metal transfer involving steel on brass and steel on steel is described. The remaining chapters consider sliding in surfaces and subsurfaces; the effect of temperature and speed on friction and wear; the role of solubility and crystal structure in friction and wear; and wear of brass. The two principal effects associated with rolling, namely, the slip or creep and energy loss, are also examined. Examples of tribological components are given. This book should be of value to undergraduates and research workers in the fields of metallurgy and engineering.




Friction and Wear of Materials


Book Description

Friction and Wear of Materials Second Edition Written by one of the world’s foremost authorities on friction, this classic book offers a lucid presentation of the theory of mechanical surface interactions as it applies to friction, wear, adhesion, and boundary lubrication. To aid engineers in design decisions, Friction and Wear of Materials evaluates the properties of materials which, under specified conditions, cause one material to function better as a bearing material than another. Featured also are thorough treatments of lubricants and the sizes and shapes of wear particles. This updated Second Edition includes new material on erosive wear, impact wear, and friction. Professor Rabinowicz’s book will be especially welcomed by mechanical and design engineers, surface scientists, tribologists and others who design, produce and operate products, machines and equipment which involve friction and its effects.







Investigation of Two-body Abrasive Wear


Book Description

An investigation of two-body abrasive wear utilizing a pin specimen on a rotating SiC particle abrasive paper test device is described. The test materials were 7075 aluminum and 4340 steel which were thermally treated to attain a range of hardness, fracture toughness and yield strength values. Wear resistance is seen to correlate directly with hardness and yield strength for both materials. For the 4340 steel the wear resistance is inversely proportional to the fracture toughness; for the 7075 aluminum, the inverse proportionality is dependent upon the microstructure. The effect of an increase in hardness by heat treatment of an alloy is much less pronounced than when the wear resistance of pure metals of differing hardness is compared. Scanning electron microscopy of abraded surfaces was used to examine the removal mechanisms involved in abrasive wear. The meaning of the observed mechanisms in terms of a model are assessed.




Surface Engineering for Corrosion and Wear Resistance


Book Description

Engineers are faced with a bewildering array of choices when selecting a surface treatment for a specific corrosion or wear application. This book provides practical information to help them select the best possible treatment. An entire chapter is devoted to process comparisons, and dozens of useful tables and figures compare surface treatment thickness and hardness ranges; abrasion and corrosion resistance; processing time, temperature, and pressure; costs; distortion tendencies; and other critical process factors and coating characteristics. The chapter Practical Guidelines for Surface Engin.