Space in Weak Propositional Proof Systems


Book Description

This book considers logical proof systems from the point of view of their space complexity. After an introduction to propositional proof complexity the author structures the book into three main parts. Part I contains two chapters on resolution, one containing results already known in the literature before this work and one focused on space in resolution, and the author then moves on to polynomial calculus and its space complexity with a focus on the combinatorial technique to prove monomial space lower bounds. The first chapter in Part II addresses the proof complexity and space complexity of the pigeon principles. Then there is an interlude on a new type of game, defined on bipartite graphs, essentially independent from the rest of the book, collecting some results on graph theory. Finally Part III analyzes the size of resolution proofs in connection with the Strong Exponential Time Hypothesis (SETH) in complexity theory. The book is appropriate for researchers in theoretical computer science, in particular computational complexity.




Handbook of Satisfiability


Book Description

Propositional logic has been recognized throughout the centuries as one of the cornerstones of reasoning in philosophy and mathematics. Over time, its formalization into Boolean algebra was accompanied by the recognition that a wide range of combinatorial problems can be expressed as propositional satisfiability (SAT) problems. Because of this dual role, SAT developed into a mature, multi-faceted scientific discipline, and from the earliest days of computing a search was underway to discover how to solve SAT problems in an automated fashion. This book, the Handbook of Satisfiability, is the second, updated and revised edition of the book first published in 2009 under the same name. The handbook aims to capture the full breadth and depth of SAT and to bring together significant progress and advances in automated solving. Topics covered span practical and theoretical research on SAT and its applications and include search algorithms, heuristics, analysis of algorithms, hard instances, randomized formulae, problem encodings, industrial applications, solvers, simplifiers, tools, case studies and empirical results. SAT is interpreted in a broad sense, so as well as propositional satisfiability, there are chapters covering the domain of quantified Boolean formulae (QBF), constraints programming techniques (CSP) for word-level problems and their propositional encoding, and satisfiability modulo theories (SMT). An extensive bibliography completes each chapter. This second edition of the handbook will be of interest to researchers, graduate students, final-year undergraduates, and practitioners using or contributing to SAT, and will provide both an inspiration and a rich resource for their work. Edmund Clarke, 2007 ACM Turing Award Recipient: "SAT solving is a key technology for 21st century computer science." Donald Knuth, 1974 ACM Turing Award Recipient: "SAT is evidently a killer app, because it is key to the solution of so many other problems." Stephen Cook, 1982 ACM Turing Award Recipient: "The SAT problem is at the core of arguably the most fundamental question in computer science: What makes a problem hard?"




First-Order Logic and Automated Theorem Proving


Book Description

There are many kinds of books on formal logic. Some have philosophers as their intended audience, some mathematicians, some computer scientists. Although there is a common core to all such books they will be very dif ferent in emphasis, methods, and even appearance. This book is intended for computer scientists. But even this is not precise. Within computer sci ence formal logic turns up in a number of areas, from program verification to logic programming to artificial intelligence. This book is intended for computer scientists interested in automated theorem proving in classical logic. To be more precise yet, it is essentially a theoretical treatment, not a how-to book, although how-to issues are not neglected. This does not mean, of course, that the book will be of no interest to philosophers or mathematicians. It does contain a thorough presentation of formal logic and many proof techniques, and as such it contains all the material one would expect to find in a course in formal logic covering completeness but not incompleteness issues. The first item to be addressed is, what are we talking about and why are we interested in it. We are primarily talking about truth as used in mathematical discourse, and our interest in it is, or should be, self-evident. Truth is a semantic concept, so we begin with models and their properties. These are used to define our subject.




Methodologies for Intelligent Systems


Book Description

This volume contains the papers selected for presentation at the Sixth International Symposium on Methodol- ogies for Intelligent Systems held in Charlotte, North Carolina, in October 1991. The symposium was hosted by UNC-Charlotte and sponsored by IBM-Charlotte, ORNL/CESAR and UNC-Charlotte. The papers discuss topics in the following major areas: - Approximate reasoning, - Expert systems, - Intelligent databases, - Knowledge representation, - Learning and adaptive systems, - Logic for artificial intelligence. The goal of the symposium was to provide a platform for a useful exchange and cross-fertilization of ideas between theoreticians and practitioners in these areas.




Handbook of Proof Theory


Book Description

This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.




Methodologies for Intelligent Systems


Book Description

This volume contains the revised versions of the papers presented at the Eighth International Symposium on Methodologies for Intelligent Systems (ISMIS '94), held in Charlotte, North Carolina, USA in October 1994. Besides four invited contributions by renowned researchers on key topics, there are 56 full papers carefully selected from more than 120 submissions. The book presents the state of the art for methodologies for intelligent systems; the papers are organized in sections on approximate reasoning, evolutionary computation, intelligent information systems, knowledge representation, methodologies, learning and adaptive systems, and logic for AI.




Theory and Applications of Satisfiability Testing - SAT 2014


Book Description

This book constitutes the refereed proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing, SAT 2014, held as part of the Vienna Summer of Logic, VSL 2014, in Vienna, Austria, in July 2014. The 21 regular papers, 7 short papers and 4 tool papers presented together with 2 invited talks were carefully reviewed and selected from 78 submissions. The papers have been organized in the following topical sections: maximum satisfiability; minimal unsatisfiability; complexity and reductions; proof complexity; parallel and incremental (Q)SAT; applications; structure; simplification and solving; and analysis.




Theory and Applications of Satisfiability Testing – SAT 2017


Book Description

This book constitutes the refereed proceedings of the 20th International Conference on Theory and Applications of Satisfiability Testing, SAT 2017, held in Melbourne, Australia, in August/September 2017. The 22 revised full papers, 5 short papers, and 3 tool papers were carefully reviewed and selected from 64 submissions. The papers are organized in the following topical sections: algorithms, complexity, and lower bounds; clause learning and symmetry handling; maximum satisfiability and minimal correction sets; parallel SAT solving; quantified Boolean formulas; satisfiability modulo theories; and SAT encodings.




Theory and Applications of Satisfiability Testing - SAT 2007


Book Description

This book constitutes the refereed proceedings of the 10th International Conference on Theory and Applications of Satisfiability Testing, SAT 2007, held in Lisbon, Portugal in May 2007. The 22 revised full papers presented together with 12 revised short papers and two invited talks cover all current research issues in propositional and quantified Boolean formula satisfiability testing.




Sat2000


Book Description