Resource-Constrained Project Scheduling


Book Description

This title presents a large variety of models and algorithms dedicated to the resource-constrained project scheduling problem (RCPSP), which aims at scheduling at minimal duration a set of activities subject to precedence constraints and limited resource availabilities. In the first part, the standard variant of RCPSP is presented and analyzed as a combinatorial optimization problem. Constraint programming and integer linear programming formulations are given. Relaxations based on these formulations and also on related scheduling problems are presented. Exact methods and heuristics are surveyed. Computational experiments, aiming at providing an empirical insight on the difficulty of the problem, are provided. The second part of the book focuses on several other variants of the RCPSP and on their solution methods. Each variant takes account of real-life characteristics which are not considered in the standard version, such as possible interruptions of activities, production and consumption of resources, cost-based approaches and uncertainty considerations. The last part presents industrial case studies where the RCPSP plays a central part. Applications are presented in various domains such as assembly shop and rolling ingots production scheduling, project management in information technology companies and instruction scheduling for VLIW processor architectures.




Scheduling of Resource-Constrained Projects


Book Description

Project management has become a widespread instrument enabling organizations to efficiently master the challenges of steadily shortening product life cycles, global markets and decreasing profit margins. With projects increasing in size and complexity, their planning and control represents one of the most crucial management tasks. This is especially true for scheduling, which is concerned with establishing execution dates for the sub-activities to be performed in order to complete the project. The ability to manage projects where resources must be allocated between concurrent projects or even sub-activities of a single project requires the use of commercial project management software packages. However, the results yielded by the solution procedures included are often rather unsatisfactory. Scheduling of Resource-Constrained Projects develops more efficient procedures, which can easily be integrated into software packages by incorporated programming languages, and thus should be of great interest for practitioners as well as scientists working in the field of project management. The book is divided into two parts. In Part I, the project management process is described and the management tasks to be accomplished during project planning and control are discussed. This allows for identifying the major scheduling problems arising in the planning process, among which the resource-constrained project scheduling problem is the most important. Part II deals with efficient computer-based procedures for the resource-constrained project scheduling problem and its generalized version. Since both problems are NP-hard, the development of such procedures which yield satisfactory solutions in a reasonable amount of computation time is very challenging, and a number of new and very promising approaches are introduced. This includes heuristic procedures based on priority rules and tabu search as well as lower bound methods and branch and bound procedures which can be applied for computing optimal solutions.




Project Scheduling


Book Description

Project management can be broadly defined as the process of managing, allocating and timing resources to achieve given objectives in an efficient and expedient manner. The objectives of the book cover three areas: classification; procedures; and problems.




Project Scheduling


Book Description

Project scheduling problems are, generally speaking, the problems of allocating scarce resources over time to perform a given set of activities. The resources are nothing other than the arbitrary means which activities complete for. Also the activities can have a variety of interpretations. Thus, project scheduling problems appear in a large spectrum of real-world situations, and, in consequence, they have been intensively studied for almost fourty years. Almost a decade has passed since the multi-author monograph: R. Slowinski, 1. W~glarz (eds. ), Advances in Project Scheduling, Elsevier, 1989, summarizing the state-of-the-art across project scheduling problems, was published. Since then, considerable progress has been made in all directions of modelling and finding solutions to these problems. Thus, the proposal by Professor Frederick S. Hillier to edit a handbook which reports on the recent advances in the field came at an exceptionally good time and motivated me to accept the challenge. Fortunately, almost all leading experts in the field have accepted my invitation and presented their completely new advances often combined with expository surveys. Thanks to them, the handbook stands a good chance of becoming a key reference point on the current state-of-the-art in project scheduling, as well as on new directions in the area. The contents are divided into four parts. The first one, dealing with classical models -exact algorithms, is preceded by a proposition of the classification scheme for scheduling problems.




Project Scheduling with Time Windows and Scarce Resources


Book Description

A survey of the state of the art of deterministic resource-constrained project scheduling with time windows. General temporal constraints and several different types of limited resources are considered. A large variety of time-based, financial, and resource-based objectives - important in practice - are studied. A thorough structural analysis of the feasible region of project scheduling problems and a classification and detailed investigation of objective functions are performed, which can be exploited for developing efficient exact and heuristic solution methods. New interesting applications of project scheduling to production and operations management as well as investment projects are discussed in the second edition.




Robust Project Scheduling


Book Description

Robust Project Scheduling is to review the fundamentals of robust project scheduling through the deployment of proactive/reactive project scheduling procedures.




Advances in Project Scheduling


Book Description

This multi-author volume, containing contributions from international experts in the field, presents recent developments in project scheduling for both theory and practice. It is organized in three parts: I. Basic deterministic models; II. Special deterministic models; III. Stochastic models. A variety of approaches is presented dealing with multiple-category resource constraints, different mathematical models of activities, and various project performance measures in single and multiobjective formulation. Exact and heuristic algorithms are presented for both deterministic and stochastic project description.The volume will be of special interest to scientists, students, decision makers, executive managers, consultants and practitioners involved in systems management or operations research, in particular in business, engineering, and finance, but also in other areas of pure and applied sciences.




Scheduling Algorithms


Book Description

Besides scheduling problems for single and parallel machines and shop scheduling problems, the book covers advanced models involving due-dates, sequence dependent change-over times and batching. A discussion of multiprocessor task scheduling and problems with multi-purpose machines is accompanied by the methods used to solve such problems, such as polynomial algorithms, dynamic programming procedures, branch-and-bound algorithms and local search heuristics, and the whole is rounded off with an analysis of complexity issues.




Project Management with Dynamic Scheduling


Book Description

The topic of this book is known as dynamic scheduling, and is used to refer to three dimensions of project management and scheduling: the construction of a baseline schedule and the analysis of a project schedule’s risk as preparation of the project control phase during project progress. This dynamic scheduling point of view implicitly assumes that the usability of a project’s baseline schedule is rather limited and only acts as a point of reference in the project life cycle. Consequently, a project schedule should especially be considered as nothing more than a predictive model that can be used for resource efficiency calculations, time and cost risk analyses, project tracking and performance measurement, and so on. In this book, the three dimensions of dynamic scheduling are highlighted in detail and are based on and inspired by a combination of academic research studies at Ghent University (www.ugent.be), in-company trainings at Vlerick Business School (www.vlerick.com) and consultancy projects at OR-AS (www.or-as.be). First, the construction of a project baseline schedule is a central theme throughout the various chapters of the book, and is discussed from a complexity point of view with and without the presence of project resources. Second, the creation of an awareness of the weak parts in a baseline schedule is discussed at the end of the two baseline scheduling parts as schedule risk analysis techniques that can be applied on top of the baseline schedule. Third, the baseline schedule and its risk analyses can be used as guidelines during the project control step where actual deviations can be corrected within the margins of the project’s time and cost reserves. The second edition of this book has seen corrections, additions and amendments in detail throughout the book. Moreover Chapter 15 on "Dynamic Scheduling with ProTrack" has been completely rewritten and extended with a section on "ProTrack as a research tool".




Essays and Surveys in Metaheuristics


Book Description

Finding exact solutions to many combinatorial optimization problems in busi ness, engineering, and science still poses a real challenge, despite the impact of recent advances in mathematical programming and computer technology. New fields of applications, such as computational biology, electronic commerce, and supply chain management, bring new challenges and needs for algorithms and optimization techniques. Metaheuristics are master procedures that guide and modify the operations of subordinate heuristics, to produce improved approx imate solutions to hard optimization problems with respect to more simple algorithms. They also provide fast and robust tools, producing high-quality solutions in reasonable computation times. The field of metaheuristics has been fast evolving in recent years. Tech niques such as simulated annealing, tabu search, genetic algorithms, scatter search, greedy randomized adaptive search, variable neighborhood search, ant systems, and their hybrids are currently among the most efficient and robust optimization strategies to find high-quality solutions to many real-life optimiza tion problems. A very large nmnber of successful applications of metaheuristics are reported in the literature and spread throughout many books, journals, and conference proceedings. A series of international conferences entirely devoted to the theory, applications, and computational developments in metaheuristics has been attracting an increasing number of participants, from universities and the industry.