Retargetable Compilers for Embedded Core Processors


Book Description

Embedded core processors are becoming a vital part of today's system-on-a-chip in the growing areas of telecommunications, multimedia and consumer electronics. This is mainly in response to a need to track evolving standards with the flexibility of embedded software. Consequently, maintaining the high product performance and low product cost requires a careful design of the processor tuned to the application domain. With the increased presence of instruction-set processors, retargetable software compilation techniques are critical, not only for improving engineering productivity, but to allow designers to explore the architectural possibilities for the application domain. Retargetable Compilers for Embedded Core Processors, with a Foreword written by Ahmed Jerraya and Pierre Paulin, overviews the techniques of modern retargetable compilers and shows the application of practical techniques to embedded instruction-set processors. The methods are highlighted with examples from industry processors used in products for multimedia, telecommunications, and consumer electronics. An emphasis is given to the methodology and experience gained in applying two different retargetable compiler approaches in industrial settings. The book also discusses many pragmatic areas such as language support, source code abstraction levels, validation strategies, and source-level debugging. In addition, new compiler techniques are described which support address generation for DSP architecture trends. The contribution is an address calculation transformation based on an architectural model. Retargetable Compilers for Embedded Core Processors will be of interest to embedded system designers and programmers, the developers of electronic design automation (EDA) tools for embedded systems, and researchers in hardware/software co-design.




Retargetable Compiler Technology for Embedded Systems


Book Description

It is well known that embedded systems have to be implemented efficiently. This requires that processors optimized for certain application domains are used in embedded systems. Such an optimization requires a careful exploration of the design space, including a detailed study of cost/performance tradeoffs. In order to avoid time-consuming assembly language programming during design space exploration, compilers are needed. In order to analyze the effect of various software or hardware configurations on the performance, retargetable compilers are needed that can generate code for numerous different potential hardware configurations. This book provides a comprehensive and up-to-date overview of the fast developing area of retargetable compilers for embedded systems. It describes a large set important tools as well as applications of retargetable compilers at different levels in the design flow. Retargetable Compiler Technology for Embedded Systems is mostly self-contained and requires only fundamental knowledge in software and compiler design. It is intended to be a key reference for researchers and designers working on software, compilers, and processor optimization for embedded systems.




Code Optimization Techniques for Embedded Processors


Book Description

The building blocks of today's and future embedded systems are complex intellectual property components, or cores, many of which are programmable processors. Traditionally, these embedded processors mostly have been pro grammed in assembly languages due to efficiency reasons. This implies time consuming programming, extensive debugging, and low code portability. The requirements of short time-to-market and dependability of embedded systems are obviously much better met by using high-level language (e.g. C) compil ers instead of assembly. However, the use of C compilers frequently incurs a code quality overhead as compared to manually written assembly programs. Due to the need for efficient embedded systems, this overhead must be very low in order to make compilers useful in practice. In turn, this requires new compiler techniques that take the specific constraints in embedded system de sign into account. An example are the specialized architectures of recent DSP and multimedia processors, which are not yet sufficiently exploited by existing compilers.




Embedded Software


Book Description

This book constitutes the refereed proceedings of the Second International Conference on Embedded Software, EMSOFT 2002, held in Grenoble, France in October 2002. The book presents 13 invited papers by leading researchers and 17 revised full papers selected during a competitive round of reviewing. The book spans the whole range of embedded software, including operating systems and middleware, programming languages and compilers, modeling and validation, software engineering and programming methodologies, scheduling and execution-time analysis, formal methods, and communication protocols and fault-tolerance.




The Compiler Design Handbook


Book Description

The widespread use of object-oriented languages and Internet security concerns are just the beginning. Add embedded systems, multiple memory banks, highly pipelined units operating in parallel, and a host of other advances and it becomes clear that current and future computer architectures pose immense challenges to compiler designers-challenges th




Embedded Systems Handbook


Book Description

Considered a standard industry resource, the Embedded Systems Handbook provided researchers and technicians with the authoritative information needed to launch a wealth of diverse applications, including those in automotive electronics, industrial automated systems, and building automation and control. Now a new resource is required to report on current developments and provide a technical reference for those looking to move the field forward yet again. Divided into two volumes to accommodate this growth, the Embedded Systems Handbook, Second Edition presents a comprehensive view on this area of computer engineering with a currently appropriate emphasis on developments in networking and applications. Those experts directly involved in the creation and evolution of the ideas and technologies presented offer tutorials, research surveys, and technology overviews that explore cutting-edge developments and deployments and identify potential trends. This first self-contained volume of the handbook, Embedded Systems Design and Verification, is divided into three sections. It begins with a brief introduction to embedded systems design and verification. It then provides a comprehensive overview of embedded processors and various aspects of system-on-chip and FPGA, as well as solutions to design challenges. The final section explores power-aware embedded computing, design issues specific to secure embedded systems, and web services for embedded devices. Those interested in taking their work with embedded systems to the network level should complete their study with the second volume: Network Embedded Systems.




Embedded Systems Handbook 2-Volume Set


Book Description

During the past few years there has been an dramatic upsurge in research and development, implementations of new technologies, and deployments of actual solutions and technologies in the diverse application areas of embedded systems. These areas include automotive electronics, industrial automated systems, and building automation and control. Comprising 48 chapters and the contributions of 74 leading experts from industry and academia, the Embedded Systems Handbook, Second Edition presents a comprehensive view of embedded systems: their design, verification, networking, and applications. The contributors, directly involved in the creation and evolution of the ideas and technologies presented, offer tutorials, research surveys, and technology overviews, exploring new developments, deployments, and trends. To accommodate the tremendous growth in the field, the handbook is now divided into two volumes. New in This Edition: Processors for embedded systems Processor-centric architecture description languages Networked embedded systems in the automotive and industrial automation fields Wireless embedded systems Embedded Systems Design and Verification Volume I of the handbook is divided into three sections. It begins with a brief introduction to embedded systems design and verification. The book then provides a comprehensive overview of embedded processors and various aspects of system-on-chip and FPGA, as well as solutions to design challenges. The final section explores power-aware embedded computing, design issues specific to secure embedded systems, and web services for embedded devices. Networked Embedded Systems Volume II focuses on selected application areas of networked embedded systems. It covers automotive field, industrial automation, building automation, and wireless sensor networks. This volume highlights implementations in fast-evolving areas which have not received proper coverage in other publications. Reflecting the unique functional requirements of different application areas, the contributors discuss inter-node communication aspects in the context of specific applications of networked embedded systems.




Emerging Directions in Embedded and Ubiquitous Computing


Book Description

Here are the refereed proceedings of the EUC 2006 workshops, held in conjunction with the IFIP International Conference on Embedded and Ubiquitous Computing in Seoul, Korea, August 2006. The book presents 102 revised papers spanning six workshops: network-centric ubiquitous systems (NCUS 2006), security in ubiquitous computing systems (SecUbiq 2006), RFID and ubiquitous sensor networks (USN 2006), trustworthiness, reliability and services in ubiquitous and sensor networks (TRUST 2006), embedded software optimization (ESO 2006), and multimedia solution and assurance in ubiquitous information systems (MSA 2006).




The Best of ICCAD


Book Description

In 2002, the International Conference on Computer Aided Design (ICCAD) celebrates its 20th anniversary. This book commemorates contributions made by ICCAD to the broad field of design automation during that time. The foundation of ICCAD in 1982 coincided with the growth of Large Scale Integration. The sharply increased functionality of board-level circuits led to a major demand for more powerful Electronic Design Automation (EDA) tools. At the same time, LSI grew quickly and advanced circuit integration became widely avail able. This, in turn, required new tools, using sophisticated modeling, analysis and optimization algorithms in order to manage the evermore complex design processes. Not surprisingly, during the same period, a number of start-up com panies began to commercialize EDA solutions, complementing various existing in-house efforts. The overall increased interest in Design Automation (DA) re quired a new forum for the emerging community of EDA professionals; one which would be focused on the publication of high-quality research results and provide a structure for the exchange of ideas on a broad scale. Many of the original ICCAD volunteers were also members of CANDE (Computer-Aided Network Design), a workshop of the IEEE Circuits and Sys tem Society. In fact, it was at a CANDE workshop that Bill McCalla suggested the creation of a conference for the EDA professional. (Bill later developed the name).




Hardware/Software Co-Design


Book Description

Introduction to Hardware-Software Co-Design presents a number of issues of fundamental importance for the design of integrated hardware software products such as embedded, communication, and multimedia systems. This book is a comprehensive introduction to the fundamentals of hardware/software co-design. Co-design is still a new field but one which has substantially matured over the past few years. This book, written by leading international experts, covers all the major topics including: fundamental issues in co-design; hardware/software co-synthesis algorithms; prototyping and emulation; target architectures; compiler techniques; specification and verification; system-level specification. Special chapters describe in detail several leading-edge co-design systems including Cosyma, LYCOS, and Cosmos. Introduction to Hardware-Software Co-Design contains sufficient material for use by teachers and students in an advanced course of hardware/software co-design. It also contains extensive explanation of the fundamental concepts of the subject and the necessary background to bring practitioners up-to-date on this increasingly important topic.