Analysis, Synthesis and Design of Chemical Processes


Book Description

The Leading Integrated Chemical Process Design Guide: Now with New Problems, New Projects, and More More than ever, effective design is the focal point of sound chemical engineering. Analysis, Synthesis, and Design of Chemical Processes, Third Edition, presents design as a creative process that integrates both the big picture and the small details–and knows which to stress when, and why. Realistic from start to finish, this book moves readers beyond classroom exercises into open-ended, real-world process problem solving. The authors introduce integrated techniques for every facet of the discipline, from finance to operations, new plant design to existing process optimization. This fully updated Third Edition presents entirely new problems at the end of every chapter. It also adds extensive coverage of batch process design, including realistic examples of equipment sizing for batch sequencing; batch scheduling for multi-product plants; improving production via intermediate storage and parallel equipment; and new optimization techniques specifically for batch processes. Coverage includes Conceptualizing and analyzing chemical processes: flow diagrams, tracing, process conditions, and more Chemical process economics: analyzing capital and manufacturing costs, and predicting or assessing profitability Synthesizing and optimizing chemical processing: experience-based principles, BFD/PFD, simulations, and more Analyzing process performance via I/O models, performance curves, and other tools Process troubleshooting and “debottlenecking” Chemical engineering design and society: ethics, professionalism, health, safety, and new “green engineering” techniques Participating successfully in chemical engineering design teams Analysis, Synthesis, and Design of Chemical Processes, Third Edition, draws on nearly 35 years of innovative chemical engineering instruction at West Virginia University. It includes suggested curricula for both single-semester and year-long design courses; case studies and design projects with practical applications; and appendixes with current equipment cost data and preliminary design information for eleven chemical processes–including seven brand new to this edition.




Chemical Process Design and Integration


Book Description

Written by a highly regarded author with industrial and academic experience, this new edition of an established bestselling book provides practical guidance for students, researchers, and those in chemical engineering. The book includes a new section on sustainable energy, with sections on carbon capture and sequestration, as a result of increasing environmental awareness; and a companion website that includes problems, worked solutions, and Excel spreadsheets to enable students to carry out complex calculations.




Distillation: Equipment and Processes


Book Description

Distillation: Equipment and Processes—winner of the 2015 PROSE Award in Chemistry & Physics from the Association of American Publishers—is a single source of authoritative information on all aspects of the theory and practice of modern distillation, suitable for advanced students and professionals working in a laboratory, industrial plants, or a managerial capacity. It addresses the most important and current research on industrial distillation, including all steps in process design (feasibility study, modeling, and experimental validation), together with operation and control aspects. This volume features an extra focus on distillation equipment and processes. Winner of the 2015 PROSE Award in Chemistry & Physics from the Association of American Publishers Practical information on the newest development written by recognized experts Coverage of a huge range of laboratory and industrial distillation approaches Extensive references for each chapter facilitates further study




Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications


Book Description

A comprehensive and example oriented text for the study of chemical process design and simulation Chemical Process Design and Simulation is an accessible guide that offers information on the most important principles of chemical engineering design and includes illustrative examples of their application that uses simulation software. A comprehensive and practical resource, the text uses both Aspen Plus and Aspen Hysys simulation software. The author describes the basic methodologies for computer aided design and offers a description of the basic steps of process simulation in Aspen Plus and Aspen Hysys. The text reviews the design and simulation of individual simple unit operations that includes a mathematical model of each unit operation such as reactors, separators, and heat exchangers. The author also explores the design of new plants and simulation of existing plants where conventional chemicals and material mixtures with measurable compositions are used. In addition, to aid in comprehension, solutions to examples of real problems are included. The final section covers plant design and simulation of processes using nonconventional components. This important resource: Includes information on the application of both the Aspen Plus and Aspen Hysys software that enables a comparison of the two software systems Combines the basic theoretical principles of chemical process and design with real-world examples Covers both processes with conventional organic chemicals and processes with more complex materials such as solids, oil blends, polymers and electrolytes Presents examples that are solved using a new version of Aspen software, ASPEN One 9 Written for students and academics in the field of process design, Chemical Process Design and Simulation is a practical and accessible guide to the chemical process design and simulation using proven software.




Rules of Thumb for Chemical Engineers


Book Description

Fractionators, separators and accumulators, cooling towers, gas treating, blending, troubleshooting field cases, gas solubility, and density of irregular solids * Hundreds of common sense techniques, shortcuts, and calculations.




CO2 Capture by Reactive Absorption-Stripping


Book Description

This book focuses on modelling issues and their implications for the correct design of reactive absorption–desorption systems. In addition, it addresses the case of carbon dioxide (CO2) post-combustion capture in detail. The book proposes a new perspective on these systems, and provides technological solutions with comparisons to previous treatments of the subject. The model that is proposed is subsequently validated using experimental data. In addition, the book features graphs to guide readers with immediate visualizations of the benefits of the methodology proposed. It shows a systematic procedure for the steady-state model-based design of a CO2 post-combustion capture plant that employs reactive absorption-stripping, using monoethanolamine as the solvent. It also discusses the minimization of energy consumption, both through the modification of the plant flowsheet and the set-up of the operating parameters. The book offers a unique source of information for researchers and practitioners alike, as it also includes an economic analysis of the complete plant. Further, it will be of interest to all academics and students whose work involves reactive absorption-stripping design and the modelling of reactive absorption-stripping systems.




Process Intensification


Book Description

Process Intensification: Engineering for Efficiency, Sustainability and Flexibility is the first book to provide a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems. Process intensification is a chemical and process design approach that leads to substantially smaller, cleaner, safer, and more energy efficient process technology. It improves process flexibility, product quality, speed to market and inherent safety, with a reduced environmental footprint. This book represents a valuable resource for engineers working with leading-edge process technologies, and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems. No other reference covers both the technology and application of PI, addressing fundamentals, industry applications, and including a development and implementation guide Covers hot and high growth topics, including emission prevention, sustainable design, and pinch analysis World-class authors: Colin Ramshaw pioneered PI at ICI and is widely credited as the father of the technology