RF and mm-Wave Power Generation in Silicon


Book Description

RF and mm-Wave Power Generation in Silicon presents the challenges and solutions of designing power amplifiers at RF and mm-Wave frequencies in a silicon-based process technology. It covers practical power amplifier design methodologies, energy- and spectrum-efficient power amplifier design examples in the RF frequency for cellular and wireless connectivity applications, and power amplifier and power generation designs for enabling new communication and sensing applications in the mm-Wave and THz frequencies. With this book you will learn: - Power amplifier design fundamentals and methodologies - Latest advances in silicon-based RF power amplifier architectures and designs and their integration in wireless communication systems - State-of-the-art mm-Wave/THz power amplifier and power generation circuits and systems in silicon - Extensive coverage from fundamentals to advanced design topics, focusing on various layers of abstraction: from device modeling and circuit design strategy to advanced digital and mixed-signal architectures for highly efficient and linear power amplifiers - New architectures for power amplifiers in the cellar and wireless connectivity covering detailed design methodologies and state-of-the-art performances - Detailed design techniques, trade-off analysis and design examples for efficiency enhancement at power back-off and linear amplification for spectrally-efficient non-constant envelope modulations - Extensive coverage of mm-Wave power-generation techniques from the early days of the 60 GHz research to current state-of the-art reconfigurable, digital mm-Wave PA architectures - Detailed analysis of power generation challenges in the higher mm-Wave and THz frequencies and novel technical solutions for a wide range for potential applications, including ultrafast wireless communication to sensing, imaging and spectroscopy - Contributions from the world-class experts from both academia and industry




Printed Antennas for 5G Networks


Book Description

The book provides a comprehensive overview of antennas for 5G technology, such as MIMO, multiband antennas, Magneto-Electric Dipole Antenna and PIFA Antenna for 5G networks, phased array antennas for 5G access, beam-forming and beam-steering issues, 5G antennas for specific applications (smartphone, cognitive radio) and advance antenna concept and materials for 5G. The book also covers ooptimizations methods for passive and active devices in mm-Wave 5G networks. It explores topics which influence the design and characterization of antennas such as data rates, high isolation, pattern and spatial diversity, making 5G antennas more suitable for a multipath environment. The book represents a learning tool for researchers in the field, and enables engineers, designers and manufacturers to identify key design challenges of antennas for 5G networks, and characterize novel antennas for 5G networks.




Millimeter-Wave Circuits for 5G and Radar


Book Description

Discover the concepts, architectures, components, tools, and techniques needed to design millimeter-wave circuits for current and emerging wireless system applications. Focusing on applications in 5G, connectivity, radar, and more, leading experts in radio frequency integrated circuit (RFIC) design provide a comprehensive treatment of cutting-edge physical-layer technologies for radio frequency (RF) transceivers - specifically RF, analog, mixed-signal, and digital circuits and architectures. The full design chain is covered, from system design requirements through to building blocks, transceivers, and process technology. Gain insight into the key novelties of 5G through authoritative chapters on massive MIMO and phased arrays, and learn about the very latest technology developments, such as FinFET logic process technology for RF and millimeter-wave applications. This is an essential reading and an excellent reference for high-frequency circuit designers in both academia and industry.




State-of-the-Art of Millimeter-Wave Silicon Technology


Book Description

This book examines the critical differences between current and next-generation Si technologies (CMOS, BiCMOS and SiC) and technology platforms (e.g. system-on-chip) in mm-wave wireless applications. We provide a basic overview of the two technologies from a technical standpoint, followed by a review of the state-of-the-art of several key building blocks in wireless systems. The influences of system requirements on the choice of semiconductor technology are vital to understanding the merits of CMOS and BiCMOS devices – e.g., output power, battery life, adjacent channel interference, cost restrictions, and so forth. These requirements, in turn, affect component-level design and performance metrics of oscillators, mixers, power and low-noise amplifiers, as well as phase-locked loops and data converters. Finally, the book offers a peek into the next generation of wireless technologies such as THz -band systems and future 6G applications.




mm-Wave Silicon Power Amplifiers and Transmitters


Book Description

Build high-performance, spectrally clean, energy-efficient mm-wave power amplifiers and transmitters with this cutting-edge guide to designing, modeling, analysing, implementing and testing new mm-wave systems. Suitable for students, researchers and practicing engineers, this self-contained guide provides in-depth coverage of state-of-the-art semiconductor devices and technologies, linear and nonlinear power amplifier technologies, efficient power combining systems, circuit concepts, system architectures and system-on-a-chip realizations. The world's foremost experts from industry and academia cover all aspects of the design process, from device technologies to system architectures. Accompanied by numerous case studies highlighting practical design techniques, tradeoffs and pitfalls, this is a superb resource for those working with high-frequency systems.




The Physics of Semiconductor Devices


Book Description

This book disseminates the current knowledge of semiconductor physics and its applications across the scientific community. It is based on a biennial workshop that provides the participating research groups with a stimulating platform for interaction and collaboration with colleagues from the same scientific community. The book discusses the latest developments in the field of III-nitrides; materials & devices, compound semiconductors, VLSI technology, optoelectronics, sensors, photovoltaics, crystal growth, epitaxy and characterization, graphene and other 2D materials and organic semiconductors.




Terahertz Biomedical and Healthcare Technologies


Book Description

Terahertz Biomedical and Healthcare Technologies: Materials to Devices reviews emerging advances in terahertz biomedical and healthcare technologies, including advances in fundamental materials science research, device design and fabrication, applications, and challenges and opportunities for improved performance. In addition, the improvement of materials, optical elements, and measuring techniques are also explored. Other sections cover the design and development of wide bandgap semiconductors for terahertz device applications, including their physics, device modeling, characterization and fabrication concepts. Finally, the book touches on potential defense, medical imaging, internet of things, and the machine learning applications of terahertz technologies. - Reviews the latest advances in the fundamental and applied research of terahertz technologies, covering key topics in materials science, biomedical engineering and healthcare informatics - Includes applications of terahertz technologies in medical imaging, diagnosis and treatment - Provides readers with an understanding of the machine learning, pattern recognition, and data analytics research utilized to enhance the effectiveness of terahertz technologies




mm-Wave Silicon Technology


Book Description

This book compiles and presents the research results from the past five years in mm-wave Silicon circuits. This area has received a great deal of interest from the research community including several university and research groups. The book covers device modeling, circuit building blocks, phased array systems, and antennas and packaging. It focuses on the techniques that uniquely take advantage of the scale and integration offered by silicon based technologies.




Silicon-Based Millimeter-Wave Devices


Book Description

A description of field-theoretical methods for the design and analysis of planar waveguide structures and antennas. The principles and limitations of transit-time devices with different injection mechanisms are covered, as are aspects of fabrication and characterization. The physical properties of silicon Schottky contacts and diodes are treated in a separate chapter, while two whole chapters are devoted to silicon/germanium devices. The integration of devices in monolithic circuits is explained together with advanced technologies, such as the self-mixing oscillator operation, before concluding with sensor and system applications.




Silicon-Germanium Heterojunction Bipolar Transistors for Mm-wave Systems Technology, Modeling and Circuit Applications


Book Description

The semiconductor industry is a fundamental building block of the new economy, there is no area of modern life untouched by the progress of nanoelectronics. The electronic chip is becomingan ever-increasing portion of system solutions, starting initially from less than 5% in the 1970 microcomputer era, to more than 60% of the final cost of a mobile telephone, 50% of the price of a personal computer (representing nearly 100% of the functionalities) and 30% of the price of a monitor in the early 2000’s.Interest in utilizing the (sub-)mm-wave frequency spectrum for commercial and research applications has also been steadily increasing. Such applications, which constitute a diverse but sizeable future market, span a large variety of areas such as health, material science, mass transit, industrial automation, communications, and space exploration.Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems Technology, Modeling and Circuit Applications provides an overview of results of the DOTSEVEN EU research project, and as such focusses on key material developments for mm-Wave Device Technology. It starts with the motivation at the beginning of the project and a summary of its major achievements. The subsequent chapters provide a detailed description of the obtained research results in the various areas of process development, device simulation, compact device modeling, experimental characterization, reliability, (sub-)mm-wave circuit design and systems.