Rheology of Complex Fluids


Book Description

The aim of the School on Rheology of Complex fluids is to bring together young researchers and teachers from educational and R&D institutions, and expose them to the basic concepts and research techniques used in the study of rheological behavior of complex fluids. The lectures will be delivered by well-recognized experts. The book contents will be based on the lecture notes of the school.




The Structure and Rheology of Complex Fluids


Book Description

The Structure and Rheology of Complex Fluids describes the microstructures of polymeric, colloidal, amphiphilic, and liquid crystalline liquids, and the relationship between microstructure and mechanical and flow properties. It provides illustrations, practical examples, and worked problems. This book can serve as both a textbook for a graduate course and a research monograph.




Complex Fluids in Biological Systems


Book Description

This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solutions in the numerical simulation of biologically relevant complex fluid flows This volume will be accessible to advanced undergraduate and beginning graduate students in engineering, mathematics, biology, and the physical sciences, but will appeal to anyone interested in the intricate and beautiful nature of complex fluids in the context of living systems.




Optical Rheometry of Complex Fluids


Book Description

This book provides a self-contained presentation of optical methods used to measure the structure and dynamics of complex fluids subject to the influence of external fields. Such fields--hydrodynamic, electric, and magnetic--are commonly encountered in both academic and industrial research, and can produce profound changes in the microscale properties of liquids comprised of polymers, colloids, liquid crystals, or surfactants. Starting with the basic Maxwell field equations, this book discusses the polarization properties of light, including Jones and Mueller calculus, and then covers the transmission, reflection, and scattering of light in anisotropic materials. Spectroscopic interactions with oriented systems such as absorptive dichroism, small wide angle light scattering, and Raman scattering are discussed. Applications of these methods to a wide range of problems in complex fluid dynamics and structure are presented, along with selected case studies chosen to elucidate the range of techniques and materials that can be studied. As the only book of its kind to present a self-contained description of optical methods used for the full range of complex fluids, this work will be special interest to a wide range of readers, including chemical engineers, physical chemists, physicists, polymer and colloid scientists, along with graduate and post-graduate researchers.




Rheology and Non-Newtonian Fluids


Book Description

This book gives a brief but thorough introduction to the fascinating subject of non-Newtonian fluids, their behavior and mechanical properties. After a brief introduction of what characterizes non-Newtonian fluids in Chapter 1 some phenomena characteristic of non-Newtonian fluids are presented in Chapter 2. The basic equations in fluid mechanics are discussed in Chapter 3. Deformation kinematics, the kinematics of shear flows, viscometric flows, and extensional flows are the topics in Chapter 4. Material functions characterizing the behavior of fluids in special flows are defined in Chapter 5. Generalized Newtonian fluids are the most common types of non-Newtonian fluids and are the subject in Chapter 6. Some linearly viscoelastic fluid models are presented in Chapter 7. In Chapter 8 the concept of tensors is utilized and advanced fluid models are introduced. The book is concluded with a variety of 26 problems. Solutions to the problems are ready for instructors







Rheology of Complex Fluids


Book Description




Understanding the Rheology of Concrete


Book Description

Estimating, modelling, controlling and monitoring the flow of concrete is a vital part of the construction process, as the properties of concrete before it has set can have a significant impact on performance. This book provides a detailed overview of the rheological behaviour of concrete, including measurement techniques, the impact of mix design, and casting. Part one begins with two introductory chapters dealing with the rheology and rheometry of complex fluids, followed by chapters that examine specific measurement and testing techniques for concrete. The focus of part two is the impact of mix design on the rheological behaviour of concrete, looking at additives including superplasticizers and viscosity agents. Finally, chapters in part three cover topics related to casting, such as thixotropy and formwork pressure. With its distinguished editor and expert team of contributors, Understanding the rheology of concrete is an essential reference for researchers, materials specifiers, architects and designers in any section of the construction industry that makes use of concrete, and will also benefit graduate and undergraduate students of civil engineering, materials and construction. Provides a detailed overview of the rheological behaviour of concrete, including measurement techniques, casting and the impact of mix design The estimating, modelling, controlling and monitoring of concrete flow is comprehensively discussed Chapters examine specific measurement and testing techniques for concrete, the impact of mix design on the rheological behaviour of concrete, particle packaging and viscosity-enhancing admixtures




Microhydrodynamics and Complex Fluids


Book Description

Drawing on the author's lectures on fluid mechanics modeling, this text takes a rigorous approach to the topic while maintaining a clear, easy-to-understand style. It deals with the main physical phenomena that occur in slow, inertialess viscous flows commonly encountered in various industrial, biophysical, and natural processes. Suitable for students in chemical or mechanical engineering, bioengineering, and physics, the book discusses a wide variety of topics, including confined flows, complex fluids, and rheology. Each situation is illustrated with examples and multi-part problems that stress analytical solutions and the physical interpretation of the mathematical results.




Microhydrodynamics, Brownian Motion, and Complex Fluids


Book Description

Provides a foundation for understanding complex fluids by integrating fluid dynamics, statistical physics, and polymer and colloid science.