Rheology and Processing of Liquid Crystal Polymers


Book Description

Liquid crystal polymers (LCPs) have many strange properties that may be utilized to advantage in the processing of products made from them and their blends with isotropic polymers. This volume (volume 2 in the series Polymer Liquid Crystals) deals with their strange flow behaviour and the models put forward to explain the phenomena that occur in such polymers and their blends. It has been known for some time that small ad ditions of a thermotropic LCP to isotropic polymers not only gives an improvement in the strength and stiffness of the blend but improves the processability of the blend over that of the isotropic polymer. In the case of lyotropic LCPs, it is possible to create a molecular composite in which the reinforcement of an isotropic polymer is achieved at a molecular level by the addition of the LCP in a common solvent. If the phenomena can be fully understood both the reinforcement and an increase in the proces sability of isotropic polymers could be optimized. This book is intended to illustrate the current theories associated with the flow of LCPs and their blends in the hope that such an optimization will be achieved by future research. Chapter 1 introduces the subject of LCPs and describes the ter minology used; Chapter 2 then discusses the more complex phenomena associated with these materials. In Chapter 3, the way in which these phe nomena may be modelled using hamiltonians is fully covered.




Rheology of Polymer Blends and Nanocomposites


Book Description

Rheology of Polymer Blends and Nanocomposites: Theory, Modelling and Applications focuses on rheology in polymer nanocomposites. It provides readers with a solid grounding in the fundamentals of rheology, with an emphasis on recent advancements. Chapters explore potential future applications for nanocomposites and polymer blends, giving readers a thorough understanding of the specific features derived from rheology as a tool for the study of polymer blends and nanocomposites. This book is ideal for industrial and academic researchers in the field of polymer blends and nanocomposites, but is also a great resource for anyone who wants to learn about the applications of rheology. - Sets out the principles of rheology as it is applied to polymer blends and nanocomposites - Demonstrates how rheological techniques are best applied to different classes of nanocomposites - Assesses the opportunities and major challenges of rheological approaches to polymer blends and nanocomposites




Melt Rheology and Its Role in Plastics Processing


Book Description

This book is designed to fulfill a dual role. On the one hand it provides a description of the rheological behavior of molten poly mers. On the other, it presents the role of rheology in melt processing operations. The account of rheology emphasises the underlying principles and presents results, but not detailed deriva tions of equations. The processing operations are described qualita tively, and wherever possible the role of rheology is discussed quantitatively. Little emphasis is given to non-rheological aspects of processes, for example, the design of machinery. The audience for which the book is intended is also dual in It includes scientists and engineers whose work in the nature. plastics industry requires some knowledge of aspects of rheology. Examples are the polymer synthetic chemist who is concerned with how a change in molecular weight will affect the melt viscosity and the extrusion engineer who needs to know the effects of a change in molecular weight distribution that might result from thermal degra dation. The audience also includes post-graduate students in polymer science and engineering who wish to acquire a more extensive background in rheology and perhaps become specialists in this area. Especially for the latter audience, references are given to more detailed accounts of specialized topics, such as constitutive relations and process simulations. Thus, the book could serve as a textbook for a graduate level course in polymer rheology, and it has been used for this purpose.




Liquid Crystal Elastomers


Book Description

This text is a primer for liquid crystals, polymers, rubber and elasticity. It is directed at physicists, chemists, material scientists, engineers and applied mathematicians at the graduate student level and beyond.




High Temperature Polymer Blends


Book Description

Polymer blends offer properties not easily obtained through the use of a single polymer, including the ability to withstand high temperatures. High Temperature Polymer Blends outlines the characteristics, developments, and use of high temperature polymer blends. The first chapter introduces high temperature polymer blends, their general principles, and thermodynamics. Further chapters go on to deal with the characterization of high temperature polymer blends for specific uses, such as fuel cells and aerospace applications. The book discusses different types of high temperature polymer blends, including liquid crystal polymers, polysulfones, and polybenzimidazole polymer blends and their commercial applications. High Temperature Polymer Blends provides a key reference for material scientists, polymer scientists, chemists, and plastic engineers, as well as academics in these fields. - Reviews characterization methods and analysis of the thermodynamic properties of high temperature polymer blends - Reviews the use of materials such as liquid crystals as reinforcements as well as applications in such areas as energy and aerospace engineering




Processing and Properties of Liquid Crystalline Polymers and LCP Based Blends


Book Description

Some papers in this book report on the most recent developments in pure liquid crystalline polymers showing that discipline is dynamic and may offer in the future numerous other opportunities not known today. We hope that our selections of papers will be interesting for specialists in polymer chemistry, blends, and their industrial application, and that information included in this book will be stimulating and will favorably impact research currently performed by the readers of this book.




Liquid Crystalline Polymers


Book Description

A 2006 edition explaining the underlying science and applications of liquid crystalline polymers.




Liquid Crystal Polymers


Book Description

Liquid crystal polymers (LCPs) have a wide range of uses, from strong engineering plastics to delicate gels for use in liquid crystal (LC) displays. For this reason, it is essential reading for materials scientists, engineers or technologists in industry, as well as research laboratories or academia. An additional indexed section containing several hundred abstracts from the Rapra Polymer Library database gives useful references for further reading.




Polymer Liquid Crystals


Book Description

Polymer Liquid Crystals covers the significant developments in the field of highlight oriented polymers. This 12-chapter book emerged from lectures presented during the seminar "Polymer Liquid Crystals: Science and Technology", held at Santa Margherita Ligure, Italy on May 19-23, 1981. The opening chapters highlight the molecular basis of liquid crystallinity. The subsequent chapters deal with the synthesis, structure, properties, and macroscopic phenomena of polymer liquid crystals. These topics are followed by descriptions of the orientation of liquid crystals, specifically the instabilities in low molecular weight nematic and cholesteric liquid crystals. The final chapters consider the applications of these crystals to display devices and the advances in high-strength fibers and molecular composites. This book will be of great value to polymer liquid crystal chemists and researchers.




Rheology


Book Description

Rheology is the study of the flow of matter, primarily in the liquid state, but also as 'soft solids' or solids under flow conditions in which they respond with plastic flow rather than deforming elastically in response to the applied force. An understanding of the flow of matter underpins a diversity of technologies and industrial processing including polymer and food processing. It applies to substances which have a complex microstructure, such as concentrated solutions, suspensions, polymers and inorganic glass formers as well as biological materials which belong to the class of soft matter. Rheological measurements are seemingly straightforward to make, but require models to interpret the mechanical measurements in terms of the microscopic behaviour of the material. This boo draws these diverse strands of current rheological research in to a single volume which embraces theory, measurement and applications in topics as diverse as theory and electrospinning, coal ash slag and food processing, hydrogels and liquid crystal polymers, reaction injection moulding and microreheology.There is a strong focus on the emerging topics in rheology and its application to complex soft matter especially in the field of food science and technology. The sixteen chapters in the volume present unpublished research work across these topics from leading authorities in the relevant field. The volume has a strong international representation with the selected authors drawn from some ten countries in Europe, South America and the rest of the world. Each chapter contains a comprehensive bibliography of related work. The book provides a fascinating snap shot across the current developments in rheology.