Hybrid Rice Breeding Manual


Book Description

Heterosis breeding and hybrid rice; Male sterility systems in rice; Organization of hybrid rice breeding program using CMS system; Source nursery; CMS maintenance and evaluation nursery; Testcross nursery; Restorer purification nursery; Backcross nursery; Combining ability nursery; Breeding rice hybrids with TGMS system; Nucleus and breeder seed production of A, B, R, and TGMS lines; Seed production of experimental rice hybrids; Evaluation of experimental rice hybrids; Improvement of parental lines; Methods of enhancing the levels of heterosis; Quality assurance procedures in hybrid rice breeding.




Rice Improvement


Book Description

This book is open access under a CC BY 4.0 license. By 2050, human population is expected to reach 9.7 billion. The demand for increased food production needs to be met from ever reducing resources of land, water and other environmental constraints. Rice remains the staple food source for a majority of the global populations, but especially in Asia where ninety percent of rice is grown and consumed. Climate change continues to impose abiotic and biotic stresses that curtail rice quality and yields. Researchers have been challenged to provide innovative solutions to maintain, or even increase, rice production. Amongst them, the ‘green super rice’ breeding strategy has been successful for leading the development and release of multiple abiotic and biotic stress tolerant rice varieties. Recent advances in plant molecular biology and biotechnologies have led to the identification of stress responsive genes and signaling pathways, which open up new paradigms to augment rice productivity. Accordingly, transcription factors, protein kinases and enzymes for generating protective metabolites and proteins all contribute to an intricate network of events that guard and maintain cellular integrity. In addition, various quantitative trait loci associated with elevated stress tolerance have been cloned, resulting in the detection of novel genes for biotic and abiotic stress resistance. Mechanistic understanding of the genetic basis of traits, such as N and P use, is allowing rice researchers to engineer nutrient-efficient rice varieties, which would result in higher yields with lower inputs. Likewise, the research in micronutrients biosynthesis opens doors to genetic engineering of metabolic pathways to enhance micronutrients production. With third generation sequencing techniques on the horizon, exciting progress can be expected to vastly improve molecular markers for gene-trait associations forecast with increasing accuracy. This book emphasizes on the areas of rice science that attempt to overcome the foremost limitations in rice production. Our intention is to highlight research advances in the fields of physiology, molecular breeding and genetics, with a special focus on increasing productivity, improving biotic and abiotic stress tolerance and nutritional quality of rice.




Rice Genomics, Genetics and Breeding


Book Description

This book presents the latest advances in rice genomics, genetics and breeding, with a special focus on their importance for rice biology and how they are breathing new life into traditional genetics. Rice is the main staple food for more than half of the world’s population. Accordingly, sustainable rice production is a crucial issue, particularly in Asia and Africa, where the population continues to grow at an alarming rate. The book’s respective chapters offer new and timely perspectives on the synergistic effects of genomics and genetics in novel rice breeding approaches, which can help address the urgent issue of providing enough food for a global population that is expected to reach 9 billion by 2050.




Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality


Book Description

Presents the latest knowledge of improving the stress tolerance, yield, and quality of rice crops One of the most important cereal crops, rice provides food to more than half of the world population. Various abiotic stresses—currently impacting an estimated 60% of crop yields—are projected to increase in severity and frequency due to climate change. In light of the threat of global food grain insecurity, interest in molecular rice breeding has intensified in recent years. Progress has been made, but there remains an urgent need to develop stress-tolerant, bio-fortified rice varieties that provide consistent and high-quality yields under both stress and non-stress conditions. Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality is the first book to provide comprehensive and up-to-date coverage of this critical topic, containing the physiological, biochemical, and molecular information required to develop effective engineering strategies for enhancing rice yield. Authoritative and in-depth chapters examine the molecular and genetic bases of abiotic stress tolerance, discuss yield and quality improvement of rice, and explore new approaches to better utilize natural resources through modern breeding. Topics Include rice adaptation to climate change, enriching rice yields under low phosphorus and light intensity, increasing iron, zinc, vitamin and antioxidant content, and improving tolerance to salinity, drought, heat, cold, submergence, heavy metals and Ultraviolet-B radiation. This important resource: Contains the latest scientific information on a wide range of topics central to molecular breeding for rice Provides timely coverage molecular breeding for improving abiotic stress tolerance, bioavailability of essential micronutrients, and crop productivity through biotechnological methods Features detailed chapters written by internationally-recognized experts in the field Discusses recent progress and future directions in molecular breeding strategies and research Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality is required reading for rice researchers, agriculturists, and agribusiness professionals, and the ideal text for instructors and students in molecular plant breeding, abiotic stress tolerance, environmental science, and plant physiology, biochemistry, molecular biology, and biotechnology.







Rice Breeding and Genetics


Book Description

There is a need for innovative approached to enhance rice production across the rice ecologies to meet future challenges."--Jacket.




Climate-Smart Rice Breeding


Book Description




Rice Research for Quality Improvement: Genomics and Genetic Engineering


Book Description

This book focuses on the conventional breeding approach, and on the latest high-throughput genomics tools and genetic engineering / biotechnological interventions used to improve rice quality. It is the first book to exclusively focus on rice as a major food crop and the application of genomics and genetic engineering approaches to achieve enhanced rice quality in terms of tolerance to various abiotic stresses, resistance to biotic stresses, herbicide resistance, nutritional value, photosynthetic performance, nitrogen use efficiency, and grain yield. The range of topics is quite broad and exhaustive, making the book an essential reference guide for researchers and scientists around the globe who are working in the field of rice genomics and biotechnology. In addition, it provides a road map for rice quality improvement that plant breeders and agriculturists can actively consult to achieve better crop production.




Fundamentals of Field Crop Breeding


Book Description

This book is an advanced textbook and a reference book for the post-graduate plant-breeding students and the plant breeders. It consolidates fundamental concepts and also the latest advances in plant-breeding practices including development in crop genomics. It contains crop wise explanation on origin, reproduction, genetics of yield contributing traits, biotic and abiotic stresses, nutritional improvement and crop specific plant-breeding procedures and techniques. The chapters are planned to describe crop-focused breeding procedure for the major crop plants as per their economic importance. The recent developments in breeding of field crops have been reported. The recent progress made in mapping traits of economic importance has been critically reviewed for each crop. The progress made in markers assisted selected in few crops has been summarized. This book bridges the knowledge gap and bring to the researchers and students information on modern breeding tools for developing biotic and abiotic stress tolerant, climate resilient and micronutrient rich varieties of field crops. The chapters in book are contributed by experienced Plant Breeders.




Crop Breeding for Drought Resistance


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.