Response Surfaces, Mixtures, and Ridge Analyses


Book Description

The authority on building empirical models and the fitting of such surfaces to data—completely updated and revised Revising and updating a volume that represents the essential source on building empirical models, George Box and Norman Draper—renowned authorities in this field—continue to set the standard with the Second Edition of Response Surfaces, Mixtures, and Ridge Analyses, providing timely new techniques, new exercises, and expanded material. A comprehensive introduction to building empirical models, this book presents the general philosophy and computational details of a number of important topics, including factorial designs at two levels; fitting first and second-order models; adequacy of estimation and the use of transformation; and occurrence and elucidation of ridge systems. Substantially rewritten, the Second Edition reflects the emergence of ridge analysis of second-order response surfaces as a very practical tool that can be easily applied in a variety of circumstances. This unique, fully developed coverage of ridge analysis—a technique for exploring quadratic response surfaces including surfaces in the space of mixture ingredients and/or subject to linear restrictions—includes MINITAB® routines for performing the calculations for any number of dimensions. Many additional figures are included in the new edition, and new exercises (many based on data from published papers) offer insight into the methods used. The exercises and their solutions provide a variety of supplementary examples of response surface use, forming an extremely important component of the text. Response Surfaces, Mixtures, and Ridge Analyses, Second Edition presents material in a logical and understandable arrangement and includes six new chapters covering an up-to-date presentation of standard ridge analysis (without restrictions); design and analysis of mixtures experiments; ridge analysis methods when there are linear restrictions in the experimental space including the mixtures experiments case, with or without further linear restrictions; and canonical reduction of second-order response surfaces in the foregoing general case. Additional features in the new edition include: New exercises with worked answers added throughout An extensive revision of Chapter 5: Blocking and Fractionating 2k Designs Additional discussion on the projection of two-level designs into lower dimensional spaces This is an ideal reference for researchers as well as a primary text for Response Surface Methodology graduate-level courses and a supplementary text for Design of Experiments courses at the upper-undergraduate and beginning-graduate levels.




Response Surfaces: Designs and Analyses


Book Description

Response Surfaces: Designs and Analyses; Second Edition presents techniques for designing experiments that yield adequate and reliable measurements of one or several responses of interest, fitting and testing the suitability of empirical models used for acquiring information from the experiments, and for utilizing the experimental results to make decisions concerning the system under investigation. This edition contains chapters on response surface models with block effects and on Taguchi's robust parameter design, additional details on transformation of response variable, more material on modified ridge analysis, and new design criteria, including rotatability for multiresponse experiments. It also presents an innovative technique for displaying correlation among several response. Numerical examples throughout the book plus exercises--with worked solutions to selected problems--complement the text.




Response Surface Methodology


Book Description

Praise for the Third Edition: “This new third edition has been substantially rewritten and updated with new topics and material, new examples and exercises, and to more fully illustrate modern applications of RSM.” - Zentralblatt Math Featuring a substantial revision, the Fourth Edition of Response Surface Methodology: Process and Product Optimization Using Designed Experiments presents updated coverage on the underlying theory and applications of response surface methodology (RSM). Providing the assumptions and conditions necessary to successfully apply RSM in modern applications, the new edition covers classical and modern response surface designs in order to present a clear connection between the designs and analyses in RSM. With multiple revised sections with new topics and expanded coverage, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition includes: Many updates on topics such as optimal designs, optimization techniques, robust parameter design, methods for design evaluation, computer-generated designs, multiple response optimization, and non-normal responses Additional coverage on topics such as experiments with computer models, definitive screening designs, and data measured with error Expanded integration of examples and experiments, which present up-to-date software applications, such as JMP®, SAS, and Design-Expert®, throughout An extensive references section to help readers stay up-to-date with leading research in the field of RSM An ideal textbook for upper-undergraduate and graduate-level courses in statistics, engineering, and chemical/physical sciences, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition is also a useful reference for applied statisticians and engineers in disciplines such as quality, process, and chemistry.




Response Surface Methodology and Related Topics


Book Description

This is the first edited volume on response surface methodology (RSM). It contains 17 chapters written by leading experts in the field and covers a wide variety of topics ranging from areas in classical RSM to more recent modeling approaches within the framework of RSM, including the use of generalized linear models. Topics covering particular aspects of robust parameter design, response surface optimization, mixture experiments, and a variety of new graphical approaches in RSM are also included. The main purpose of this volume is to provide an overview of the key ideas that have shaped RSM, and to bring attention to recent research directions and developments in RSM, which can have many useful applications in a variety of fields. The volume will be very helpful to researchers as well as practitioners interested in RSM''s theory and potential applications. It will be particularly useful to individuals who have used RSM methods in the past, but have not kept up with its recent developments, both in theory and applications. Sample Chapter(s). Chapter 1: Two-Level Factorial and Fractional Factorial Designs in Blocks of Size Two. Part 2 (560 KB). Contents: Two-Level Factorial and Fractional Factorial Designs in Blocks of Size Two. Part 2 (Y J Yang & N R Draper); Response Surface Experiments on Processes with High Variation (S G Gilmour & L A Trinca); Random Run Order, Randomization and Inadvertent Split-Plots in Response Surface Experiments (J Ganju & J M Lucas); Statistical Inference for Response Surface Optima (D K J Lin & J J Peterson); A Search Method for the Exploration of New Regions in Robust Parameter Design (G Mer-Quesada & E del Castillo); Response Surface Approaches to Robust Parameter Design (T J Robinson & S S Wulff); Response Surface Methods and Their Application in the Treatment of Cancer with Drug Combinations: Some Reflections (K S Dawson et al.); Generalized Linear Models and Response Transformation (A C Atkinson); GLM Designs: The Dependence on Unknown Parameters Dilemma (A I Khuri & S Mukhopadhyay); Design for a Trinomial Response to Dose (S K Fan & K Chaloner); Evaluating the Performance of Non-Standard Designs: The San Cristobal Design (L M Haines); 50 Years of Mixture Experiment Research: 1955OCo2004 (G F Piepel); Graphical Methods for Comparing Response Surface Designs for Experiments with Mixture Components (H B Goldfarb & D C Montgomery); Graphical Methods for Assessing the Prediction Capability of Response Surface Designs (J J Borkowski); Using Fraction of Design Space Plots for Informative Comparisons between Designs (C M Anderson-Cook & A Ozol-Godfrey); Concepts of Slope-Rotatability for Second Order Response Surface Designs (S H Park); Design of Experiments for Estimating Differences between Responses and Slopes of the Response (S Huda). Readership: Researchers in academia and industry interested in response surface methodology and its applications; engineers interested in improving quality and productivity in industry."




Empirical Model-Building and Response Surfaces


Book Description

An innovative discussion of building empirical models and the fitting of surfaces to data. Introduces the general philosophy of response surface methodology, and details least squares for response surface work, factorial designs at two levels, fitting second-order models, adequacy of estimation and the use of transformation, occurrence and elucidation of ridge systems, and more. Some results are presented for the first time. Includes real-life exercises, nearly all with solutions.




RSM Simplified


Book Description

This book continues where DOE Simplified leaves off in Chapter 8 with an introduction to "Response Surface Methods [RSM] for Optimization." It presents this advanced tool for design of experiments (DOE) in a way that anyone with a minimum of technical training can understand and appreciate. Unlike any other book of its kind, RSM Simplified keeps formulas to a minimum—making liberal use of figures, charts, graphs and checklists. It also offers many relevant examples, amusing and fun do-it-yourself exercises.




Surrogates


Book Description

Computer simulation experiments are essential to modern scientific discovery, whether that be in physics, chemistry, biology, epidemiology, ecology, engineering, etc. Surrogates are meta-models of computer simulations, used to solve mathematical models that are too intricate to be worked by hand. Gaussian process (GP) regression is a supremely flexible tool for the analysis of computer simulation experiments. This book presents an applied introduction to GP regression for modelling and optimization of computer simulation experiments. Features: • Emphasis on methods, applications, and reproducibility. • R code is integrated throughout for application of the methods. • Includes more than 200 full colour figures. • Includes many exercises to supplement understanding, with separate solutions available from the author. • Supported by a website with full code available to reproduce all methods and examples. The book is primarily designed as a textbook for postgraduate students studying GP regression from mathematics, statistics, computer science, and engineering. Given the breadth of examples, it could also be used by researchers from these fields, as well as from economics, life science, social science, etc.




Response Surfaces: Designs and Analyses


Book Description

Response Surfaces: Designs and Analyses; Second Edition presents techniques for designing experiments that yield adequate and reliable measurements of one or several responses of interest, fitting and testing the suitability of empirical models used for acquiring information from the experiments, and for utilizing the experimental results to make decisions concerning the system under investigation. This edition contains chapters on response surface models with block effects and on Taguchi's robust parameter design, additional details on transformation of response variable, more material on modified ridge analysis, and new design criteria, including rotatability for multiresponse experiments. It also presents an innovative technique for displaying correlation among several response. Numerical examples throughout the book plus exercises--with worked solutions to selected problems--complement the text.




Design and Analysis of Experiments


Book Description

This bestselling professional reference has helped over 100,000 engineers and scientists with the success of their experiments. The new edition includes more software examples taken from the three most dominant programs in the field: Minitab, JMP, and SAS. Additional material has also been added in several chapters, including new developments in robust design and factorial designs. New examples and exercises are also presented to illustrate the use of designed experiments in service and transactional organizations. Engineers will be able to apply this information to improve the quality and efficiency of working systems.




Process Optimization


Book Description

This book covers several bases at once. It is useful as a textbook for a second course in experimental optimization techniques for industrial production processes. In addition, it is a superb reference volume for use by professors and graduate students in Industrial Engineering and Statistics departments. It will also be of huge interest to applied statisticians, process engineers, and quality engineers working in the electronics and biotech manufacturing industries. In all, it provides an in-depth presentation of the statistical issues that arise in optimization problems, including confidence regions on the optimal settings of a process, stopping rules in experimental optimization, and more.