Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers


Book Description

This book on recent research in noncommutative harmonic analysis treats the Lp boundedness of Riesz transforms associated with Markovian semigroups of either Fourier multipliers on non-abelian groups or Schur multipliers. The detailed study of these objects is then continued with a proof of the boundedness of the holomorphic functional calculus for Hodge–Dirac operators, thereby answering a question of Junge, Mei and Parcet, and presenting a new functional analytic approach which makes it possible to further explore the connection with noncommutative geometry. These Lp operations are then shown to yield new examples of quantum compact metric spaces and spectral triples. The theory described in this book has at its foundation one of the great discoveries in analysis of the twentieth century: the continuity of the Hilbert and Riesz transforms on Lp. In the works of Lust-Piquard (1998) and Junge, Mei and Parcet (2018), it became apparent that these Lp operations can be formulated on Lp spaces associated with groups. Continuing these lines of research, the book provides a self-contained introduction to the requisite noncommutative background. Covering an active and exciting topic which has numerous connections with recent developments in noncommutative harmonic analysis, the book will be of interest both to experts in no-commutative Lp spaces and analysts interested in the construction of Riesz transforms and Hodge–Dirac operators.




Local Hardy Spaces and Quadratic Estimates for Dirac Type Operators on Riemannian Manifolds


Book Description

The connection between quadratic estimates and the existence of a bounded holomorphic functional calculus of an operator provides a framework for applying harmonic analysis to the theory of differential operators. This is a generalization of the connection between Littlewood--Paley--Stein estimates and the functional calculus provided by the Fourier transform. We use the former approach in this thesis to study first-order differential operators on Riemannian manifolds. The theory developed is local in the sense that it does not depend on the spectrum of the operator in a neighbourhood of the origin. When we apply harmonic analysis to obtain estimates, the local theory only requires that we do so up to a finite scale. This allows us to consider manifolds with exponential volume growth in situations where the global theory requires polynomial volume growth. A holomorphic functional calculus is constructed for operators on a reflexive Banach space that are bisectorial except possibly in a neighbourhood of the origin. We prove that this functional calculus is bounded if and only if certain local quadratic estimates hold. For operators with spectrum in a neighbourhood of the origin, the results are weaker than those for bisectorial operators. For operators with a spectral gap in a neighbourhood of the origin, the results are stronger. In each case, however, local quadratic estimates are a more appropriate tool than standard quadratic estimates for establishing that the functional calculus is bounded. This theory allows us to define local Hardy spaces of differential forms that are adapted to a class of first-order differential operators on a complete Riemannian manifold with at most exponential volume growth. The local geometric Riesz transform associated with the Hodge--Dirac operator is bounded on these spaces provided that a certain condition on the exponential growth of the manifold is satisfied. A characterisation of these spaces in terms of local molecules is also obtained. These results can be viewed as the localisation of those for the Hardy spaces of differential forms introduced by Auscher, McIntosh and Russ. Finally, we introduce a class of first-order differential operators that act on the trivial bundle over a complete Riemannian manifold with at most exponential volume growth and on which a local Poincar\'{e} inequality holds. A local quadratic estimate is established for certain perturbations of these operators. As an application, we solve the Kato square root problem for divergence form operators on complete Riemannian manifolds with Ricci curvature bounded below that are embedded in Euclidean space with a uniformly bounded second fundamental form. This is based on the framework for Dirac type operators that was introduced by Axelsson, Keith and McIntosh.




Analysis in Banach Spaces


Book Description

This second volume of Analysis in Banach Spaces, Probabilistic Methods and Operator Theory, is the successor to Volume I, Martingales and Littlewood-Paley Theory. It presents a thorough study of the fundamental randomisation techniques and the operator-theoretic aspects of the theory. The first two chapters address the relevant classical background from the theory of Banach spaces, including notions like type, cotype, K-convexity and contraction principles. In turn, the next two chapters provide a detailed treatment of the theory of R-boundedness and Banach space valued square functions developed over the last 20 years. In the last chapter, this content is applied to develop the holomorphic functional calculus of sectorial and bi-sectorial operators in Banach spaces. Given its breadth of coverage, this book will be an invaluable reference to graduate students and researchers interested in functional analysis, harmonic analysis, spectral theory, stochastic analysis, and the operator-theoretic approach to deterministic and stochastic evolution equations.




Dirac Operators in Analysis


Book Description

Clifford analysis has blossomed into an increasingly relevant and fashionable area of research in mathematical analysis-it fits conveniently at the crossroads of many fundamental areas of research, including classical harmonic analysis, operator theory, and boundary behavior. This book presents a state-of-the-art account of the most recent developments in the field of Clifford analysis with contributions by many of the field's leading researchers.










Mathematics for Physics


Book Description

An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.




Mathematical Reviews


Book Description




Boundary Integral Equations


Book Description

This is the second edition of the book which has two additional new chapters on Maxwell’s equations as well as a section on properties of solution spaces of Maxwell’s equations and their trace spaces. These two new chapters, which summarize the most up-to-date results in the literature for the Maxwell’s equations, are sufficient enough to serve as a self-contained introductory book on the modern mathematical theory of boundary integral equations in electromagnetics. The book now contains 12 chapters and is divided into two parts. The first six chapters present modern mathematical theory of boundary integral equations that arise in fundamental problems in continuum mechanics and electromagnetics based on the approach of variational formulations of the equations. The second six chapters present an introduction to basic classical theory of the pseudo-differential operators. The aforementioned corresponding boundary integral operators can now be recast as pseudo-differential operators. These serve as concrete examples that illustrate the basic ideas of how one may apply the theory of pseudo-differential operators and their calculus to obtain additional properties for the corresponding boundary integral operators. These two different approaches are complementary to each other. Both serve as the mathematical foundation of the boundary element methods, which have become extremely popular and efficient computational tools for boundary problems in applications. This book contains a wide spectrum of boundary integral equations arising in fundamental problems in continuum mechanics and electromagnetics. The book is a major scholarly contribution to the modern approaches of boundary integral equations, and should be accessible and useful to a large community of advanced graduate students and researchers in mathematics, physics, and engineering.




Explorations in Harmonic Analysis


Book Description

This self-contained text provides an introduction to modern harmonic analysis in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. It takes the novice mathematical reader from the rudiments of harmonic analysis (Fourier series) to the Fourier transform, pseudodifferential operators, and finally to Heisenberg analysis.