Rings of Continuous Functions


Book Description

Designed as a text as well as a treatise, the first systematic account of the theory of rings of continuous functions remains the basic graduate-level book in this area. 1960 edition.




Rings of Continuous Functions


Book Description

Designed as a text as well as a treatise, the first systematic account of the theory of rings of continuous functions remains the basic graduate-level book in this area. 1960 edition.




Rings of Continuous Functions


Book Description

This book is addressed to those who know the meaning of each word in the title: none is defined in the text. The reader can estimate the knowledge required by looking at Chapter 0; he should not be dis couraged, however, if he finds some of its material unfamiliar or the presentation rather hurried. Our objective is a systematic study of the ring C(X) of all real-valued continuous functions on an arbitrary topological space X. We are con cerned with algebraic properties of C(X) and its subring C*(X) of bounded functions and with the interplay between these properties and the topology of the space X on which the functions are defined. Major emphasis is placed on the study of ideals, especially maximal ideals, and on their associated residue class rings. Problems of extending continuous functions from a subspace to the entire space arise as a necessary adjunct to this study and are dealt with in considerable detail. The contents of the book fall naturally into three parts. The first, comprising Chapters 1 through 5 and the beginning of Chapter 10, presents the fundamental aspects of the subject insofar as they can be discussed without introducing the Stone-Cech compactification. In Chapter 3, the study is reduced to the case of completely regular spaces.




Spaces of Continuous Functions


Book Description

The space C(X) of all continuous functions on a compact space X carries the structure of a normed vector space, an algebra and a lattice. On the one hand we study the relations between these structures and the topology of X, on the other hand we discuss a number of classical results according to which an algebra or a vector lattice can be represented as a C(X). Various applications of these theorems are given.Some attention is devoted to related theorems, e.g. the Stone Theorem for Boolean algebras and the Riesz Representation Theorem.The book is functional analytic in character. It does not presuppose much knowledge of functional analysis; it contains introductions into subjects such as the weak topology, vector lattices and (some) integration theory.




General Topology


Book Description

Among the best available reference introductions to general topology, this volume is appropriate for advanced undergraduate and beginning graduate students. Includes historical notes and over 340 detailed exercises. 1970 edition. Includes 27 figures.




Rings of Continuous Function


Book Description

This book contains papers on algebra, functional analysis, and general topology, with a strong interaction with set theoretic axioms and involvement with category theory, presented in the special session on Rings of Continuous Functions held in 1982 in Cincinnati, Ohio.




Basic Category Theory


Book Description

A short introduction ideal for students learning category theory for the first time.




Stone Spaces


Book Description

A unified treatment of the corpus of mathematics that has developed out of M. H. Stone's representation theorem for Boolean algebras (1936) which has applications in almost every area of modern mathematics.




Frames and Locales


Book Description

Until the mid-twentieth century, topological studies were focused on the theory of suitable structures on sets of points. The concept of open set exploited since the twenties offered an expression of the geometric intuition of a "realistic" place (spot, grain) of non-trivial extent. Imitating the behaviour of open sets and their relations led to a new approach to topology flourishing since the end of the fifties.It has proved to be beneficial in many respects. Neglecting points, only little information was lost, while deeper insights have been gained; moreover, many results previously dependent on choice principles became constructive. The result is often a smoother, rather than a more entangled, theory. No monograph of this nature has appeared since Johnstone's celebrated Stone Spaces in 1983. The present book is intended as a bridge from that time to the present. Most of the material appears here in book form for the first time or is presented from new points of view. Two appendices provide an introduction to some requisite concepts from order and category theories.




Tasty Bits of Several Complex Variables


Book Description

This book is a polished version of my course notes for Math 6283, Several Complex Variables, given in Spring 2014 and Spring 2016 semester at Oklahoma State University. The course covers basics of holomorphic function theory, CR geometry, the dbar problem, integral kernels and basic theory of complex analytic subvarieties. See http: //www.jirka.org/scv/ for more information.