Risk Modeling, Analysis and Control of Multi-energy Systems


Book Description

This book focuses on the risk modeling, analysis and control of multi-energy systems considering cross-sectorial failure propagation. Both models and methods have been addressed with engineering practice. This is accomplished by doing a thorough investigation into the modeling of system physics and reliabilities in both long- and short-term phases. Different models and methods to evaluate the risk of multi-energy systems considering various disturbances, e.g., component failures, load uncertainties and extreme weather, are studied in detail. Furthermore, several risk control strategies for multi-energy systems, such as long-term capacity planning and integrated demand response, are analyzed in this book, which is especially suited for readers interested in system risk management. The book can benefit researchers, engineers, and graduate students in the fields of electrical and electronic engineering, energy engineering, complex network and control engineering, etc.




Modeling, Analysis, and Control of Smart Energy Systems


Book Description

The increasing demand for cleaner and more intelligent energy solutions poses a challenge that resonates across academic, engineering, and policymaking spheres. The complexity of integrating renewable energy sources, energy storage solutions, and advanced communication technologies demands a comprehensive understanding, rigorous analysis, and innovative control strategies. The academic community, in particular, seeks a guiding light through this intricate maze of evolving energy dynamics. Modeling, Analysis, and Control of Smart Energy Systems is a groundbreaking publication that offers more than theoretical exploration; it is a roadmap equipped with the knowledge and tools required to shape the future of energy systems. From laying conceptual foundations to unraveling real-world case studies, the book seamlessly bridges the gap between theory and application. Its comprehensive coverage of mathematical modeling, dynamic system analysis, intelligent control strategies, and the integration of renewable energy sources positions it as an authoritative reference for researchers, engineers, and policymakers alike.




Machine Learning for Energy Systems


Book Description

This volume deals with recent advances in and applications of computational intelligence and advanced machine learning methods in power systems, heating and cooling systems, and gas transportation systems. The optimal coordinated dispatch of the multi-energy microgrids with renewable generation and storage control using advanced numerical methods is discussed. Forecasting models are designed for electrical insulator faults, the health of the battery, electrical insulator faults, wind speed and power, PV output power and transformer oil test parameters. The loads balance algorithm for an offshore wind farm is proposed. The information security problems in the energy internet are analyzed and attacked using information transmission contemporary models, based on blockchain technology. This book will be of interest, not only to electrical engineers, but also to applied mathematicians who are looking for novel challenging problems to focus on.




Multi-Asset Risk Modeling


Book Description

Multi-Asset Risk Modeling describes, in a single volume, the latest and most advanced risk modeling techniques for equities, debt, fixed income, futures and derivatives, commodities, and foreign exchange, as well as advanced algorithmic and electronic risk management. Beginning with the fundamentals of risk mathematics and quantitative risk analysis, the book moves on to discuss the laws in standard models that contributed to the 2008 financial crisis and talks about current and future banking regulation. Importantly, it also explores algorithmic trading, which currently receives sparse attention in the literature. By giving coherent recommendations about which statistical models to use for which asset class, this book makes a real contribution to the sciences of portfolio management and risk management. - Covers all asset classes - Provides mathematical theoretical explanations of risk as well as practical examples with empirical data - Includes sections on equity risk modeling, futures and derivatives, credit markets, foreign exchange, and commodities




Risk Assessment Of Power Systems


Book Description

"Risk Assessment of Power Systems closes the gap between risk theory and real-world application. As a leading authority in power system risk evaluation for more than fifteen years and the author of a considerable number of papers and more than fifty technical reports on power system risk and reliability evaluation, Wenyuan Li is uniquely qualified to present this material. Following the models and methods developed from the author's hands-on experience, readers learn how to evaluate power system risk in planning, design, operations, and maintenance activities to keep risk at targeted levels."--BOOK JACKET.




Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems


Book Description

A timely introduction to the revolutionary technologies reshaping the global energy market The search for more efficient and sustainable ways to meet society’s energy requirements has driven recent technological innovation on an unprecedented scale. The energy needs of a growing population coupled with concerns about climate change have posed unique challenges that necessitate novel energy technologies . The transition of modern energy grids towards multi-energy networks, or MENs, promises to be a fundamental transformation in the way we energize our world. Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems presents an overview of the foundational methodologies and technologies underlying MENs and the groundbreaking vehicle systems that bring them together. With the inclusion of transformative technologies from radically different sectors, the content covered in this book will be of high value for researchers interested in future energy systems. Readers will also find: In-depth examination of the process of switching from conventional transportation systems to modern intelligent transportation ones Detailed discussions of topics including self-driving vehicles, hybrid energy technologies, grid-edge, and more The introduction of a holistic, reconfigurable system adaptable to vastly different conditions and forms of network interaction Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems is useful for researchers in electrical, mechanical, civil, architectural, or environmental engineering, as well as for telecommunications researchers and for any industry professionals with an interest in energy transportation.




IoT Enabled Multi-Energy Systems


Book Description

IoT-Enabled Multi-Energy Systems: From Isolated Energy Grids to Modern Interconnected Networks proposes practical solutions for the management and control of energy interactions throughout the interconnected energy infrastructures of the future multi-energy grid. The book discusses a panorama of modeling, planning and optimization considerations for IoT technologies, their applications across grid modernization, and the coordinated operation of multi-vector energy grids. The work is suitable for energy, power, mechanical, chemical, process and environmental engineers, and highly relevant for researchers and postgraduate students who work on energy systems. Sections address core theoretical underpinnings, significant challenges and opportunities, how to support IoT-based developed expert systems, and how AI can empower IoT technologies to sustainably develop fully renewable modern multi-carrier energy networks. Contributors address artificial intelligence technology and its applications in developing IoT-based technologies, cloud-based intelligent energy management schemes, data science and multi-energy big data analysis, machine learning and deep learning techniques in multi-energy systems, and much more. - Reviews core applications of IoT technologies in grid modernization of multi-energy networks - Develops practical solutions for optimal integration of renewable energy resources in modern multi-vector energy networks - Analyzes the reliable integration, sustainable operation and accurate planning of multi-carrier energy grids in highly penetrated stochastic energy resources




Optimisation Models and Methods in Energy Systems


Book Description

This book is a printed edition of the Special Issue Optimisation Models and Methods in Energy Systems that was published in Energies




Proceedings of the 3rd International Conference on Green Energy, Environment and Sustainable Development (GEESD2022)


Book Description

With the general acknowledgement that climate change constitutes an existential threat to both mankind and to the planet, the quest for more sustainable and environmentally-friendly ways of developing and maintaining human civilizations has become ever more important in recent years. This book presents the proceedings of GEESD2022, the 3rd International Conference on Green Energy, Environment and Sustainable Development. Due to continuing travel restrictions as a result of the COVID-19 pandemic, the conference was held as a hybrid event, part face-to-face in Beijing, China, and partly online via Zoom, on 29 June 2022. The 141 papers included here were selected after a rigorous 6-month process of evaluation and peer-review from the more than 300 submissions received, and are grouped into 7 sections: energy system and smart control; sustainable and green energy; environmental modeling and simulation; environmental science and pollution research; ecology and rural environment; building and environment; and water and mineral resources. The book provides an overview of the most up-to-date findings and technologies current in green energy, environment and sustainable development today, and will be of interest to all those working in the field.




Distributed Energy Resources in Local Integrated Energy Systems


Book Description

Distributed Energy Resources in Local Integrated Energy Systems: Optimal Operation and Planning reviews research and policy developments surrounding the optimal operation and planning of DER in the context of local integrated energy systems in the presence of multiple energy carriers, vectors and multi-objective requirements. This assessment is carried out by analyzing impacts and benefits at local levels, and in distribution networks and larger systems. These frameworks represent valid tools to provide support in the decision-making process for DER operation and planning. Uncertainties of RES generation and loads in optimal DER scheduling are addressed, along with energy trading and blockchain technologies. Interactions among various energy carriers in local energy systems are investigated in scalable and flexible optimization models for adaptation to a number of real contexts thanks to the wide variety of generation, conversion and storage technologies considered, the exploitation of demand side flexibility, emerging technologies, and through the general mathematical formulations established. - Integrates multi-energy DER, including electrical and thermal distributed generation, demand response, electric vehicles, storage and RES in the context of local integrated energy systems - Fosters the integration of DER in the electricity markets through the concepts of DER aggregation - Addresses the challenges of emerging paradigms as energy communities and energy blockchain applications in the current and future energy landscape - Proposes operation optimization models and methods through multi-objective approaches for fostering short- and long-run sustainability of local energy systems - Assesses and models the uncertainties of renewable resources and intermittent loads in the short-term decision-making process for smart decentralized energy systems