Investigating Mechanisms of Post-transcriptional Gene Regulation in the Germ Cells of Zebrafish


Book Description

"In most organisms, the primordial germ cells are specified and set aside from the surrounding somatic tissues very early in development. Their ability to carry out a gene regulatory program quite distinct from the surrounding somatic cells, and their capacity to specify entire new organisms has made them a focus of many studies that seek to understand how specific transcriptional and translational programs contribute to cell fate. Zebrafish, a vertebrate with external development of the embryo, is currently one of the best animal models for understanding the molecular basis of germ cell specification. Briefly, germ cell specification is dependent on maternally provided cytoplasmic determinants, termed the germ plasm. The germ plasm, is localised to areas of the embryo that will become the germ cells later in development by inheritance the germ plasm through cleavage divisions. A number of mRNA components of the germ plasm have been identified; interestingly many of them encode RNA-binding proteins, and almost all of them have invertebrate and mammalian orthologues. Evidence suggests that these maternally provided mRNA determinants are specifically maintained in the germ cells throughout embryonic development, and at least some of these gene products are essential for germ cell specification. A number of studies have begun to elucidate the molecular mechanisms that allow germ cell specific maintenance of these mRNAs, and also to identify how maternally provided messages destined for the germ cells are destabilised and eliminated in the somatic tissues. For example, the germ cell specific mRNAs nanos and TDRD7 are destabilised in somatic cells through interactions of the 3 ́UTR sequences with the microRNA miR-430. This miR-430-mediated repression is overcome in germ cells through the binding of an RNA-binding protein Dead end (DND) to distinct sites within the nanos and TDRD7 3 ́UTRs. This thesis details a study of the zebrafish orthologue of HuB, a highly conserved RNAbinding protein with expression in neurons, testes and ovaries in adult vertebrates. In zebrafish, HuB mRNA is maternally provided, and is restricted to the germ cells by 24 hours of development; this is the first report to indicate expression of HuB in the germ cells of vertebrates, suggesting a possible role for HuB in germ cell development. Through detailed mutagenesis studies, the HuB 3 ́UTR has been found to contain a set of four destabilising elements, which bring about somatic degradation of the mRNA, and a separate, 30-nucleotide motif that is responsible for germ cell specific stabilisation of the message. None of these identified destabilising elements are targets for miR-430, and thus they represent novel sequence elements for somatic message degradation in zebrafish. Through a candidate screening approach, DAZL, a germ cell specific RNA-binding protein, was identified as being capable of stabilising HuB mRNA. Further-more, DAZL was shown to mediate this stabilisation of HuB mRNA by interacting, either directly or indirectly, with the 30-nucleotide stabilisation element that was indentified in the HuB 3 ́UTR. This elucidation of the mechanisms of germ cell specific expression of the HuB mRNA is an important finding, for it reveals mechanisms of post-transcriptional regulation that are distinct from that of other germ cell specific mRNAs. In summary, the identification of HuB as a germ cell specific mRNA, and the determination of the post-transcriptional mechanisms responsible for this specific expression is an important first step in understanding how HuB and other germ cell specific RNA-binding proteins contribute to germ cell development and function." -- leaf 3.










Regulation of Germline Stem Cells in the Adult Zebrafish Ovary


Book Description

Nanos RNA-binding proteins down-regulate specific mRNAs in order to maintain germline stem cells (GSCs) by inhibiting their differentiation in both vertebrates and invertebrates. In the zebrafish, nanos3 is required for the maintenance of oocyte production in adults. I hypothesized that 1) nanos3 maintains GSCs in the adult ovary, and that 2) nanos3 interacts with specific transcripts to maintain GSCs. In the adult ovary, the adult




Germline Development in the Zebrafish


Book Description

This volume details a wide range of methods, ranging from beginner through advanced, used to further study zebrafish and fish germline.. Chapter guide readers through cultivating and manipulating germ cells, imaging of germline processes and the molecular analysis of their, protein, and RNA. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, application details for both the expert and non-expert reader, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Germline Development in the Zebrafish: Methods and Protocols aims to ensure successful results in the further study of this vital field.







Maternal Control of Development in Vertebrates


Book Description

Eggs of all animals contain mRNAs and proteins that are supplied to or deposited in the egg as it develops during oogenesis. These maternal gene products regulate all aspects of oocyte development, and an embryo fully relies on these maternal gene products for all aspects of its early development, including fertilization, transitions between meiotic and mitotic cell cycles, and activation of its own genome. Given the diverse processes required to produce a developmentally competent egg and embryo, it is not surprising that maternal gene products are not only essential for normal embryonic development but also for fertility. This review provides an overview of fundamental aspects of oocyte and early embryonic development and the interference and genetic approaches that have provided access to maternally regulated aspects of vertebrate development. Some of the pathways and molecules highlighted in this review, in particular, Bmps, Wnts, small GTPases, cytoskeletal components, and cell cycle regulators, are well known and are essential regulators of multiple aspects of animal development, including oogenesis, early embryogenesis, organogenesis, and reproductive fitness of the adult animal. Specific examples of developmental processes under maternal control and the essential proteins will be explored in each chapter, and where known conserved aspects or divergent roles for these maternal regulators of early vertebrate development will be discussed throughout this review. Table of Contents: Introduction / Oogenesis: From Germline Stem Cells to Germline Cysts / Oocyte Polarity and the Embryonic Axes: The Balbiani Body, an Ancient Oocyte Asymmetry / Preparing Developmentally Competent Eggs / Egg Activation / Blocking Polyspermy / Cleavage/ Mitosis: Going Multicellular / Maternal-Zygotic Transition / Reprogramming: Epigenetic Modifications and Zygotic Genome Activation / Dorsal-Ventral Axis Formation before Zygotic Genome Activation in Zebrafish and Frogs / Maternal TGF-β and the Dorsal-Ventral Embryonic Axis / Maternal Control After Zygotic Genome Activation / Compensation by Stable Maternal Proteins / Maternal Contributions to Germline Establishment or Maintenance / Perspective / Acknowledgments / References




Germline Stem Cells


Book Description

This second edition provides updated and new chapters on selected genetic, molecular, biochemical, and cell biological techniques. Chapter’s guide readers through methods and principles on primordial germ cells and germline stem cells, however many of these principles can be applied to different types of adult stem cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Germline Stem Cells: Second Edition aims to present the new findings and techniques that have developed since the first edition.




Insights from Animal Reproduction


Book Description

The chapters in this volume of "Insights from Animal Reproduction" address several, particular hot topics in the field of reproduction. The book begins with a comprehensive overview of the cryopreservation of sheep-produced embryos. The following chapter revises the assisted reproductive techniques available for South American wild mammals. Chapter 3 presents the technical procedures necessary to produce transgenic goats. Chapter 4 provides a comprehensive revision of the major molecular determinants of litter size in prolific species. Chapter 5 examines the germ cell determinant transmission, segregation, and function using the zebrafish as a model for germ cell specification in the embryo. Chapter 6 summarizes the current understanding of the molecular and cellular mechanisms regulating the early stages of folliculogenesis. Chapter 7 examines the sperm motility regulatory proteins as a tool to enhance sperm quality in cryopreservation processes. Chapter 8 discusses contemporary knowledge on the effects of extremely low frequency magnetic fields (ELF-MF) on male reproductive function in rodents. Chapter 9 highlights the importance of the cytogenetic evaluation in searching for causes of infertility of phenotypically normal animals, as well as individuals with an abnormal sex development. The last chapter provides evidence that other uterine diseases may be hidden behind the clinical diagnosis of pyometra that in some case may have a poor outcome.