Cell Biology by the Numbers


Book Description

A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid




RNA Turnover in Bacteria, Archaea and Organelles


Book Description

Specific complexes of protein and RNA carry out many essential biological functions, including RNA processing, RNA turnover, RNA folding, as well as the translation of genetic information from mRNA into protein sequences. Messenger RNA (mRNA) decay is now emerging as an important control point and a major contributor to gene expression. Continuing identification of the protein factors and cofactors, and mRNA instability elements, responsible for mRNA decay allow researchers to build a comprehensive picture of the highly orchestrated processes involved in mRNA decay and its regulation. Covers the difference in processing of mRNA between eukaryotes, bacteria and archea. Benefit: Processing of mRNA differs greatly between eukaryotes, bacteria and archea and this affords researchers readily reproducible techniques to understand and study the molecular pathogenesis of disease Expert researchers introduce the most advanced technologies and techniques to identify mRNA processing, transport, localization and turnover which are central to the process of gene expression. Benefit: Keeps MIE buyers and online subscribers up-to-date with the latest research Offers step by step lab instructions including necessary equipment and reagents. Benefit: Provides tried and tested techniques which eliminate searching through many different sources. Tested techniques are trustworthy and avoid pitfalls so the same mistakes are not made over and over




Control of Messenger RNA Stability


Book Description

This is the first comprehensive review of mRNA stability and its implications for regulation of gene expression. Written by experts in the field, Control of Messenger RNA Stability serves both as a reference for specialists in regulation of mRNA stability and as a general introduction for a broader community of scientists. Provides perspectives from both prokaryotic and eukaryotic systems Offers a timely, comprehensive review of mRNA degradation, its regulation, and its significance in the control of gene expression Discusses the mechanisms, RNA structural determinants, and cellular factors that control mRNA degradation Evaluates experimental procedures for studying mRNA degradation




Prokaryotic Metabolism and Physiology


Book Description

Extensive and up-to-date review of key metabolic processes in bacteria and archaea and how metabolism is regulated under various conditions.




Escherichia Coli and Salmonella


Book Description

This is the long–awaited second edition of an invaluable classic! Escherichia coli occupies a central role in contemporary molecular biology. It is the unicellular organism about which most is known – all molecular and cellular biologists will want a copy of this book. In 154 chapters, 250 expert authors and editors present the state of the art. Completely rewritten and restructured, the second edition offers a whole new approach to the subject.




RNA Exosome


Book Description

The diversity of RNAs inside living cells is amazing. We have known of the more “classic” RNA species: mRNA, tRNA, rRNA, snRNA and snoRNA for some time now, but in a steady stream new types of molecules are being described as it is becoming clear that most of the genomic information of cells ends up in RNA. To deal with the enormous load of resulting RNA processing and degradation reactions, cells need adequate and efficient molecular machines. The RNA exosome is arising as a major facilitator to this effect. Structural and functional data gathered over the last decade have illustrated the biochemical importance of this multimeric complex and its many co-factors, revealing its enormous regulatory power. By gathering some of the most prominent researchers in the exosome field, it is the aim of this volume to introduce this fascinating protein complex as well as to give a timely and rich account of its many functions. The exosome was discovered more than a decade ago by Phil Mitchell and David Tollervey by its ability to trim the 3’end of yeast, S. cerevisiae, 5. 8S rRNA. In a historic account they laid out the events surrounding this identification and the subsequent birth of the research field. In the chapter by Kurt Januszyk and Christopher Lima the structural organization of eukaryotic exosomes and their evolutionary counterparts in bacteria and archaea are discussed in large part through presentation of structures.




Translation Mechanisms


Book Description

Translation Mechanisms provides investigators and graduate students with overviews of recent developments in the field of protein biosynthesis that are fuelled by the explosive and synergic growth of structural biology, genomics, and bioinformatics. The outstanding progress in our understanding of the structure, dynamics, and evolution of the prokaryotic and eukaryotic translation machinery, as well as applications in medicine and biotechnology, are described in 26 chapters covering recent discoveries on: -the subtleties of tRNA aminoacylation with natural and unnatural amino acids. -the control of mRNA stability, a key step of gene regulation. -ribosome structure and function, in the era of the atomic-crystal resolution of the ribosome. -the regulation of the biosynthesis of the translational machinery components. -the action of a variety of inhibitors of translation and the prospect for clinical studies.




The Prokaryotes


Book Description

The Prokaryotes is a comprehensive, multi-authored, peer reviewed reference work on Bacteria and Achaea. This fourth edition of The Prokaryotes is organized to cover all taxonomic diversity, using the family level to delineate chapters. Different from other resources, this new Springer product includes not only taxonomy, but also prokaryotic biology and technology of taxa in a broad context. Technological aspects highlight the usefulness of prokaryotes in processes and products, including biocontrol agents and as genetics tools. The content of the expanded fourth edition is divided into two parts: Part 1 contains review chapters dealing with the most important general concepts in molecular, applied and general prokaryote biology; Part 2 describes the known properties of specific taxonomic groups. Two completely new sections have been added to Part 1: bacterial communities and human bacteriology. The bacterial communities section reflects the growing realization that studies on pure cultures of bacteria have led to an incomplete picture of the microbial world for two fundamental reasons: the vast majority of bacteria in soil, water and associated with biological tissues are currently not culturable, and that an understanding of microbial ecology requires knowledge on how different bacterial species interact with each other in their natural environment. The new section on human microbiology deals with bacteria associated with healthy humans and bacterial pathogenesis. Each of the major human diseases caused by bacteria is reviewed, from identifying the pathogens by classical clinical and non-culturing techniques to the biochemical mechanisms of the disease process. The 4th edition of The Prokaryotes is the most complete resource on the biology of prokaryotes. The following volumes are published consecutively within the 4th Edition: Prokaryotic Biology and Symbiotic Associations Prokaryotic Communities and Ecophysiology Prokaryotic Physiology and Biochemistry Applied Bacteriology and Biotechnology Human Microbiology Actinobacteria Firmicutes Alphaproteobacteria and Betaproteobacteria Gammaproteobacteria Deltaproteobacteria and Epsilonproteobacteria Other Major Lineages of Bacteria and the Archaea




DNA and RNA Modification Enzymes


Book Description

This volume is a timely and comprehensive description of the many facets of DNA and RNA modification-editing processes and to some extent repair mechanisms. Each chapter offers fundamental principles as well as up to date information on recent advances in the field (up to end 2008). They ended by a shortconclusion and future prospect' section and