Robot Learning by Visual Observation


Book Description

This book presents programming by demonstration for robot learning from observations with a focus on the trajectory level of task abstraction Discusses methods for optimization of task reproduction, such as reformulation of task planning as a constrained optimization problem Focuses on regression approaches, such as Gaussian mixture regression, spline regression, and locally weighted regression Concentrates on the use of vision sensors for capturing motions and actions during task demonstration by a human task expert




Robot Learning by Visual Observation


Book Description

This book presents programming by demonstration for robot learning from observations with a focus on the trajectory level of task abstraction Discusses methods for optimization of task reproduction, such as reformulation of task planning as a constrained optimization problem Focuses on regression approaches, such as Gaussian mixture regression, spline regression, and locally weighted regression Concentrates on the use of vision sensors for capturing motions and actions during task demonstration by a human task expert




Handling Uncertainty and Networked Structure in Robot Control


Book Description

This book focuses on two challenges posed in robot control by the increasing adoption of robots in the everyday human environment: uncertainty and networked communication. Part I of the book describes learning control to address environmental uncertainty. Part II discusses state estimation, active sensing, and complex scenario perception to tackle sensing uncertainty. Part III completes the book with control of networked robots and multi-robot teams. Each chapter features in-depth technical coverage and case studies highlighting the applicability of the techniques, with real robots or in simulation. Platforms include mobile ground, aerial, and underwater robots, as well as humanoid robots and robot arms. Source code and experimental data are available at http://extras.springer.com. The text gathers contributions from academic and industry experts, and offers a valuable resource for researchers or graduate students in robot control and perception. It also benefits researchers in related areas, such as computer vision, nonlinear and learning control, and multi-agent systems.




Robot Programming by Demonstration


Book Description

Recent advances in RbD have identified a number of key issues for ensuring a generic approach to the transfer of skills across various agents and contexts. This book focuses on the two generic questions of what to imitate and how to imitate and proposes active teaching methods.




Interactive Task Learning


Book Description

Experts from a range of disciplines explore how humans and artificial agents can quickly learn completely new tasks through natural interactions with each other. Humans are not limited to a fixed set of innate or preprogrammed tasks. We learn quickly through language and other forms of natural interaction, and we improve our performance and teach others what we have learned. Understanding the mechanisms that underlie the acquisition of new tasks through natural interaction is an ongoing challenge. Advances in artificial intelligence, cognitive science, and robotics are leading us to future systems with human-like capabilities. A huge gap exists, however, between the highly specialized niche capabilities of current machine learning systems and the generality, flexibility, and in situ robustness of human instruction and learning. Drawing on expertise from multiple disciplines, this Strüngmann Forum Report explores how humans and artificial agents can quickly learn completely new tasks through natural interactions with each other. The contributors consider functional knowledge requirements, the ontology of interactive task learning, and the representation of task knowledge at multiple levels of abstraction. They explore natural forms of interactions among humans as well as the use of interaction to teach robots and software agents new tasks in complex, dynamic environments. They discuss research challenges and opportunities, including ethical considerations, and make proposals to further understanding of interactive task learning and create new capabilities in assistive robotics, healthcare, education, training, and gaming. Contributors Tony Belpaeme, Katrien Beuls, Maya Cakmak, Joyce Y. Chai, Franklin Chang, Ropafadzo Denga, Marc Destefano, Mark d'Inverno, Kenneth D. Forbus, Simon Garrod, Kevin A. Gluck, Wayne D. Gray, James Kirk, Kenneth R. Koedinger, Parisa Kordjamshidi, John E. Laird, Christian Lebiere, Stephen C. Levinson, Elena Lieven, John K. Lindstedt, Aaron Mininger, Tom Mitchell, Shiwali Mohan, Ana Paiva, Katerina Pastra, Peter Pirolli, Roussell Rahman, Charles Rich, Katharina J. Rohlfing, Paul S. Rosenbloom, Nele Russwinkel, Dario D. Salvucci, Matthew-Donald D. Sangster, Matthias Scheutz, Julie A. Shah, Candace L. Sidner, Catherine Sibert, Michael Spranger, Luc Steels, Suzanne Stevenson, Terrence C. Stewart, Arthur Still, Andrea Stocco, Niels Taatgen, Andrea L. Thomaz, J. Gregory Trafton, Han L. J. van der Maas, Paul Van Eecke, Kurt VanLehn, Anna-Lisa Vollmer, Janet Wiles, Robert E. Wray III, Matthew Yee-King




Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2022


Book Description

This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI).




Computer Vision – ECCV 2020


Book Description

The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.




Approaches to Probabilistic Model Learning for Mobile Manipulation Robots


Book Description

This book presents techniques that enable mobile manipulation robots to autonomously adapt to new situations. Covers kinematic modeling and learning; self-calibration; tactile sensing and object recognition; imitation learning and programming by demonstration.




Recent Advances in Robot Learning


Book Description

Recent Advances in Robot Learning contains seven papers on robot learning written by leading researchers in the field. As the selection of papers illustrates, the field of robot learning is both active and diverse. A variety of machine learning methods, ranging from inductive logic programming to reinforcement learning, is being applied to many subproblems in robot perception and control, often with objectives as diverse as parameter calibration and concept formulation. While no unified robot learning framework has yet emerged to cover the variety of problems and approaches described in these papers and other publications, a clear set of shared issues underlies many robot learning problems. Machine learning, when applied to robotics, is situated: it is embedded into a real-world system that tightly integrates perception, decision making and execution. Since robot learning involves decision making, there is an inherent active learning issue. Robotic domains are usually complex, yet the expense of using actual robotic hardware often prohibits the collection of large amounts of training data. Most robotic systems are real-time systems. Decisions must be made within critical or practical time constraints. These characteristics present challenges and constraints to the learning system. Since these characteristics are shared by other important real-world application domains, robotics is a highly attractive area for research on machine learning. On the other hand, machine learning is also highly attractive to robotics. There is a great variety of open problems in robotics that defy a static, hand-coded solution. Recent Advances in Robot Learning is an edited volume of peer-reviewed original research comprising seven invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 23, Numbers 2 and 3).




Inductive Logic Programming


Book Description

This book constitutes the refereed proceedings of the 32nd International Conference on Inductive Logic Programming, ILP 2023, held in Bari, Italy, during November 13–15, 2023. The 11 full papers and 1 short paper included in this book were carefully reviewed and selected from 18 submissions. They cover all aspects of learning in logic, multi-relational data mining, statistical relational learning, graph and tree mining, learning in other (non-propositional) logic-based knowledge representation frameworks, exploring intersections to statistical learning and other probabilistic approaches.