Robot Manipulators


Book Description

Homogeneous transformations; Kinematic equations; Solving kinematic equations; Differential relationships; Motion trajectories; Dynamics; Control; Static forces; Compliance; Programming.




Modelling and Control of Robot Manipulators


Book Description

Fundamental and technological topics are blended uniquely and developed clearly in nine chapters with a gradually increasing level of complexity. A wide variety of relevant problems is raised throughout, and the proper tools to find engineering-oriented solutions are introduced and explained, step by step. Fundamental coverage includes: Kinematics; Statics and dynamics of manipulators; Trajectory planning and motion control in free space. Technological aspects include: Actuators; Sensors; Hardware/software control architectures; Industrial robot-control algorithms. Furthermore, established research results involving description of end-effector orientation, closed kinematic chains, kinematic redundancy and singularities, dynamic parameter identification, robust and adaptive control and force/motion control are provided. To provide readers with a homogeneous background, three appendices are included on: Linear algebra; Rigid-body mechanics; Feedback control. To acquire practical skill, more than 50 examples and case studies are carefully worked out and interwoven through the text, with frequent resort to simulation. In addition, more than 80 end-of-chapter exercises are proposed, and the book is accompanied by a solutions manual containing the MATLAB code for computer problems; this is available from the publisher free of charge to those adopting this work as a textbook for courses.




Mechanics of Robotic Manipulation


Book Description

The science and engineering of robotic manipulation. "Manipulation" refers to a variety of physical changes made to the world around us. Mechanics of Robotic Manipulation addresses one form of robotic manipulation, moving objects, and the various processes involved—grasping, carrying, pushing, dropping, throwing, and so on. Unlike most books on the subject, it focuses on manipulation rather than manipulators. This attention to processes rather than devices allows a more fundamental approach, leading to results that apply to a broad range of devices, not just robotic arms. The book draws both on classical mechanics and on classical planning, which introduces the element of imperfect information. The book does not propose a specific solution to the problem of manipulation, but rather outlines a path of inquiry.




Control of Robot Manipulators in Joint Space


Book Description

Tutors can design entry-level courses in robotics with a strong orientation to the fundamental discipline of manipulator control pdf solutions manual Overheads will save a great deal of time with class preparation and will give students a low-effort basis for more detailed class notes Courses for senior undergraduates can be designed around Parts I – III; these can be augmented for masters courses using Part IV




Robot Manipulator Control


Book Description

Robot Manipulator Control offers a complete survey of control systems for serial-link robot arms and acknowledges how robotic device performance hinges upon a well-developed control system. Containing over 750 essential equations, this thoroughly up-to-date Second Edition, the book explicates theoretical and mathematical requisites for controls design and summarizes current techniques in computer simulation and implementation of controllers. It also addresses procedures and issues in computed-torque, robust, adaptive, neural network, and force control. New chapters relay practical information on commercial robot manipulators and devices and cutting-edge methods in neural network control.




Repetitive Motion Planning and Control of Redundant Robot Manipulators


Book Description

Repetitive Motion Planning and Control of Redundant Robot Manipulators presents four typical motion planning schemes based on optimization techniques, including the fundamental RMP scheme and its extensions. These schemes are unified as quadratic programs (QPs), which are solved by neural networks or numerical algorithms. The RMP schemes are demonstrated effectively by the simulation results based on various robotic models; the experiments applying the fundamental RMP scheme to a physical robot manipulator are also presented. As the schemes and the corresponding solvers presented in the book have solved the non-repetitive motion problems existing in redundant robot manipulators, it is of particular use in applying theoretical research based on the quadratic program for redundant robot manipulators in industrial situations. This book will be a valuable reference work for engineers, researchers, advanced undergraduate and graduate students in robotics fields. Yunong Zhang is a professor at The School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China; Zhijun Zhang is a research fellow working at the same institute.




Control of Redundant Robot Manipulators


Book Description

This monograph provides a comprehensive and thorough treatment of the problem of controlling a redundant robot manipulator. It presents the latest research from the field with a good balance between theory and practice. All theoretical developments are verified both via simulation and experimental work on an actual prototype redundant robot manipulator. This book is the first text aimed at graduate students and researchers working in the area of redundant manipulators giving a comprehensive coverage of control of redundant robot manipulators from the viewpoint of theory and experimentation.




Interaction Control of Robot Manipulators


Book Description

Robot interaction control is one of the most challenging targets for industrial robotics. While it would provide the robotic systems with a high degree of autonomy, its effectiveness is limited by the complexity of this problem and by the necessity of special sensors (six-dof force sensors). On the other hand, the control methodologies to be adopted for addressing this problem can be considered mature and well-assessed. All the known interaction control strategies (e.g. impedance, direct force control) are tackled and reshuffled in a geometrically consistent way for simplification of the task specification and enhancement of the execution performance. This book represents the first step towards the application of theoretical results at an industrial level; in fact each proposed control algorithm is experimentally tested here on an industrial robotic setup.




Task-Space Sensory Feedback Control of Robot Manipulators


Book Description

This book presents recent advances in robot control theory on task space sensory feedback control of robot manipulators. By using sensory feedback information, the robot control systems are robust to various uncertainties in modelling and calibration errors of the sensors. Several sensory task space control methods that do not require exact knowledge of either kinematics or dynamics of robots, are presented. Some useful methods such as approximate Jacobian control, adaptive Jacobian control, region control and multiple task space regional feedback are included. These formulations and methods give robots a high degree of flexibility in dealing with unforeseen changes and uncertainties in its kinematics and dynamics, which is similar to human reaching movements and tool manipulation. It also leads to the solution of several long-standing problems and open issues in robot control, such as force control with constraint uncertainty, control of multi-fingered robot hand with uncertain contact points, singularity issue of Jacobian matrix, global task-space control, which are also presented in this book. The target audience for this book includes scientists, engineers and practitioners involved in the field of robot control theory.




Adaptive Control of Robot Manipulators


Book Description

This book introduces an unified function approximation approach to the control of uncertain robot manipulators containing general uncertainties. It works for free space tracking control as well as compliant motion control. It is applicable to the rigid robot and the flexible joint robot. Even with actuator dynamics, the unified approach is still feasible. All these features make the book stand out from other existing publications.