Rehabilitation Robotics


Book Description

Rehabilitation Robotics gives an introduction and overview of all areas of rehabilitation robotics, perfect for anyone new to the field. It also summarizes available robot technologies and their application to different pathologies for skilled researchers and clinicians. The editors have been involved in the development and application of robotic devices for neurorehabilitation for more than 15 years. This experience using several commercial devices for robotic rehabilitation has enabled them to develop the know-how and expertise necessary to guide those seeking comprehensive understanding of this topic. Each chapter is written by an expert in the respective field, pulling in perspectives from both engineers and clinicians to present a multi-disciplinary view. The book targets the implementation of efficient robot strategies to facilitate the re-acquisition of motor skills. This technology incorporates the outcomes of behavioral studies on motor learning and its neural correlates into the design, implementation and validation of robot agents that behave as 'optimal' trainers, efficiently exploiting the structure and plasticity of the human sensorimotor systems. In this context, human-robot interaction plays a paramount role, at both the physical and cognitive level, toward achieving a symbiotic interaction where the human body and the robot can benefit from each other's dynamics. - Provides a comprehensive review of recent developments in the area of rehabilitation robotics - Includes information on both therapeutic and assistive robots - Focuses on the state-of-the-art and representative advancements in the design, control, analysis, implementation and validation of rehabilitation robotic systems




Soft Robotics in Rehabilitation


Book Description

Soft Robotics in Rehabilitation explores the specific branch of robotics dealing with developing robots from compliant and flexible materials. Unlike robots built from rigid materials, soft robots behave the way in which living organs move and adapt to their surroundings and allow for increased flexibility and adaptability for the user. This book is a comprehensive reference discussing the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs. The book examines various techniques applied in soft robotics, including the development of soft actuators, rigid actuators with soft behavior, intrinsically soft actuators, and soft sensors. This book is perfect for graduate students, researchers, and professional engineers in robotics, control, mechanical, and electrical engineering who are interested in soft robotics, artificial intelligence, rehabilitation therapy, and medical and rehabilitation device design and manufacturing. - Outlines the application of soft robotic techniques to design platforms that provide rehabilitation therapy for disabled persons to help improve their motor functions - Discusses the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs - Offers readers the ability to find soft robotics devices, methods, and results for any limb, and then compare the results with other options provided in the book




Exoskeletons in Rehabilitation Robotics


Book Description

The new technological advances opened widely the application field of robots. Robots are moving from the classical application scenario with structured industrial environments and tedious repetitive tasks to new application environments that require more interaction with the humans. It is in this context that the concept of Wearable Robots (WRs) has emerged. One of the most exciting and challenging aspects in the design of biomechatronics wearable robots is that the human takes a place in the design, this fact imposes several restrictions and requirements in the design of this sort of devices. The key distinctive aspect in wearable robots is their intrinsic dual cognitive and physical interaction with humans. The key role of a robot in a physical human–robot interaction (pHRI) is the generation of supplementary forces to empower and overcome human physical limits. The crucial role of a cognitive human–robot interaction (cHRI) is to make the human aware of the possibilities of the robot while allowing them to maintain control of the robot at all times. This book gives a general overview of the robotics exoskeletons and introduces the reader to this robotic field. Moreover, it describes the development of an upper limb exoskeleton for tremor suppression in order to illustrate the influence of a specific application in the designs decisions.




Advances in Rehabilitation Robotics


Book Description

One of the major application targets of service robots is to use them as assistive devices for rehabilitation. This book introduces some latest achievements in the field of rehabilitation robotics and assistive technology for people with disabilities and aged people. The book contains results from both theoretical and experimental works and reviews on some new advanced rehabilitation devices which has been recently transferred to the industry. Significant parts of the book are devoted to the assessment of new rehabilitation technologies, the evaluation of prototype devices with end-users, the safety of rehabilitation robots, and robot-assisted neurorehabilitation. The book is a representative selection of the latest trends in rehabilitation robotics and can be used as a reference for teaching on mechatronic devices for rehabilitation.




Neuro-Robotics


Book Description

Neuro-robotics is one of the most multidisciplinary fields of the last decades, fusing information and knowledge from neuroscience, engineering and computer science. This book focuses on the results from the strategic alliance between Neuroscience and Robotics that help the scientific community to better understand the brain as well as design robotic devices and algorithms for interfacing humans and robots. The first part of the book introduces the idea of neuro-robotics, by presenting state-of-the-art bio-inspired devices. The second part of the book focuses on human-machine interfaces for performance augmentation, which can seen as augmentation of abilities of healthy subjects or assistance in case of the mobility impaired. The third part of the book focuses on the inverse problem, i.e. how we can use robotic devices that physically interact with the human body, in order (a) to understand human motor control and (b) to provide therapy to neurologically impaired people or people with disabilities.




Exoskeleton Robots for Rehabilitation and Healthcare Devices


Book Description

This book addresses cutting-edge topics in robotics and related technologies for rehabilitation, covering basic concepts and providing the reader with the information they need to solve various practical problems. Intended as a reference guide to the application of robotics in rehabilitation, it covers e.g. musculoskeletal modelling, gait analysis, biomechanics, robotics modelling and simulation, sensors, wearable devices, and the Internet of Medical Things.




Interfacing Humans and Robots for Gait Assistance and Rehabilitation


Book Description

The concepts represented in this textbook are explored for the first time in assistive and rehabilitation robotics, which is the combination of physical, cognitive, and social human-robot interaction to empower gait rehabilitation and assist human mobility. The aim is to consolidate the methodologies, modules, and technologies implemented in lower-limb exoskeletons, smart walkers, and social robots when human gait assistance and rehabilitation are the primary targets. This book presents the combination of emergent technologies in healthcare applications and robotics science, such as soft robotics, force control, novel sensing methods, brain-computer interfaces, serious games, automatic learning, and motion planning. From the clinical perspective, case studies are presented for testing and evaluating how those robots interact with humans, analyzing acceptance, perception, biomechanics factors, and physiological mechanisms of recovery during the robotic assistance or therapy. Interfacing Humans and Robots for Gait Assistance and Rehabilitation will enable undergraduate and graduate students of biomedical engineering, rehabilitation engineering, robotics, and health sciences to understand the clinical needs, technology, and science of human-robot interaction behind robotic devices for rehabilitation, and the evidence and implications related to the implementation of those devices in actual therapy and daily life applications. Provides concepts and examples for different types of robots for assistance and rehabilitation; Addresses clinical needs, experiences, and perspectives of the use of rehabilitation technology; Looks at science and technology of human-robot interaction for healthcare applications.




Robotic Assistive Technologies


Book Description

This book contains a comprehensive overview of all current uses of robots in rehabilitation. The underlying principles in each application are provided. This is followed by a critical review of the technology available, of the utilization protocols, and of user studies, outcomes, and clinical evidence, if existing. Ethical and social implications of robot use are also discussed. The reader will have an in depth view of rehabilitation robots, from principles to practice.




Robotic Systems: Concepts, Methodologies, Tools, and Applications


Book Description

Through expanded intelligence, the use of robotics has fundamentally transformed a variety of fields, including manufacturing, aerospace, medicine, social services, and agriculture. Continued research on robotic design is critical to solving various dynamic obstacles individuals, enterprises, and humanity at large face on a daily basis. Robotic Systems: Concepts, Methodologies, Tools, and Applications is a vital reference source that delves into the current issues, methodologies, and trends relating to advanced robotic technology in the modern world. Highlighting a range of topics such as mechatronics, cybernetics, and human-computer interaction, this multi-volume book is ideally designed for robotics engineers, mechanical engineers, robotics technicians, operators, software engineers, designers, programmers, industry professionals, researchers, students, academicians, and computer practitioners seeking current research on developing innovative ideas for intelligent and autonomous robotics systems.




Advanced Robotics and Intelligent Automation in Manufacturing


Book Description

While human capabilities can withstand broad levels of strain, they cannot hope to compete with the advanced abilities of automated technologies. Developing advanced robotic systems will provide a better, faster means to produce goods and deliver a level of seamless communication and synchronization that exceeds human skill. Advanced Robotics and Intelligent Automation in Manufacturing is a pivotal reference source that provides vital research on the application of advanced manufacturing technologies in regards to production speed, quality, and innovation. While highlighting topics such as human-machine interaction, quality management, and sensor integration, this publication explores state-of-the-art technologies in the field of robotics engineering as well as human-robot interaction. This book is ideally designed for researchers, students, engineers, manufacturers, managers, industry professionals, and academicians seeking to enhance their innovative design capabilities.