Robust Control of Linear Systems Subject to Uncertain Time-Varying Parameters


Book Description

The last thirty years have witnessed an enormous effort in the field of robust control of dynamical systems. The main objective of this book is that of presenting, in a unified framework, the main results appeared in the literature on this topic, with particular reference to the robust stability problem for linear systems subject to time-varying uncertainties. The book mainly focuses on those problems for which a definitive solution has been found; indeed most of the results we shall present are given in the form of necessary and sufficient conditions involving the feasibility of Linear Matrix Inequalities based problems. For self-containedness purposes, most of the results provided in the book are proven. We have tried to maintain the development of the proofs as simple as possible, without sacrificing the mathematical rigor. Some parts of the book (especially those contained in Chaps. 2, 3 and 5) can be teached in advanced control courses; however this work is mainly devoted to both researchers in the field of systems and control theory and engineers working in industries which want to apply the methodologies presented in the book to practical control problems. To this regard, as the various results are derived, they are immediately reinforced with real world examples.




Robust Control of Time-delay Systems


Book Description

Recently, there have been significant developments in robust control of time-delay systems. This volume presents a systematic treatment of robust control for such systems in the frequency domain. The emphasis is on systems with a single input or output delay, although the delay-free part of the plant can be multi-input-multi-output, in which case the delays in different channels should be the same. The author covers the whole range of H-infinity control of time-delay systems: from controller parameterization implementation; from the Nehari problem to the four-block problem; from theoretical developments to practical issues. The major tools used are similarity transformation, the chain-scattering approach and J-spectral factorization. Self-contained, "Robust Control of Time-delay Systems" will interest control theorists and mathematicians working with time-delay systems. Its methodical approach will be of value to graduates studying general robust control theory or its applications in time-delay systems.










Robust Control and Linear Parameter Varying Approaches


Book Description

Vehicles are complex systems (non-linear, multi-variable) where the abundance of embedded controllers should ensure better security. This book aims at emphasizing the interest and potential of Linear Parameter Varying methods within the framework of vehicle dynamics, e.g. proposed control-oriented model, complex enough to handle some system non linearities but still simple for control or observer design, take into account the adaptability of the vehicle's response to driving situations, to the driver request and/or to the road sollicitations, manage interactions between various actuators to optimize the dynamic behavior of vehicles. This book results from the 32th International Summer School in Automatic that held in Grenoble, France, in September 2011, where recent methods (based on robust control and LPV technics), then applied to the control of vehicle dynamics, have been presented. After some theoretical background and a view on some recent works on LPV approaches (for modelling, analysis, control, observation and diagnosis), the main emphasis is put on road vehicles but some illustrations are concerned with railway, aerospace and underwater vehicles. The main objective of the book is to demonstrate the value of this approach for controlling the dynamic behavior of vehicles. It presents, in a rm way, background and new results on LPV methods and their application to vehicle dynamics.




Robust Control of Uncertain Dynamic Systems


Book Description

This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the “real world” system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework. Illustrates various systems level methodologies with examples and applications drawn from aerospace, electrical and mechanical engineering. Provides connections between lyapunov-based matrix approach and the transfer function based polynomial approaches. Robust Control of Uncertain Dynamic Systems: A Linear State Space Approach is an ideal book for first year graduate students taking a course in robust control in aerospace, mechanical, or electrical engineering.







Robust Control and Filtering for Time-Delay Systems


Book Description

A discussion of robust control and filtering for time-delay systems. It provides information on approaches to stability, stabilization, control design, and filtering aspects of electronic and computer systems - explicating the developments in time-delay systems and uncertain time-delay systems. There are appendices detailing important facets of matrix theory, standard lemmas and mathematical results, and applications of industry-tested software.




Robust Control Theory in Hilbert Space


Book Description

An operator theoretic approach to robust control analysis for linear time-varying systems, with the emphasis on the conceptual similarity with the H control theory for time-invariant systems. It clarifies the major difficulties confronted in the time varying case and all the necessary operator theory is developed from first principles, making the book as self-contained as possible. After presenting the necessary results from the theories of Toeplitz operators and nest algebras, linear systems are defined as input-output operators and the relationship between stabilisation and the existence of co-prime factorisations is described. Uniform optimal control problems are formulated as model-matching problems and are reduced to four block problems, while robustness is considered both from the point of view of fractional representations and the "time varying gap" metric, as is the relationship between these types of uncertainties. The book closes with the solution of the orthogonal embedding problem for time-varying contractive systems. As such, this book is useful to both mathematicians and to control engineers.




Mathematical Methods in Robust Control of Linear Stochastic Systems


Book Description

This second edition of Mathematical Methods in the Robust Control of Linear Stochastic Systems includes a large number of recent results in the control of linear stochastic systems. More specifically, the new results presented are: - A unified and abstract framework for Riccati type equations arising in the stochastic control - Stability and control problems for systems perturbed by homogeneous Markov processes with infinite number of states - Mixed H2 / H∞ control problem and numerical procedures - Linear differential equations with positive evolution on ordered Banach spaces with applications for stochastic systems including both multiplicative white noise and Markovian jumps represented by a Markov chain with countable infinite set of states - Kalman filtering for stochastic systems subject both to state dependent noise and Markovian jumps - H∞ reduced order filters for stochastic systems The book will appeal to graduate students, researchers in advanced control engineering, finance, mathematical systems theory, applied probability and stochastic processes, and numerical analysis. From Reviews of the First Edition: This book is concerned with robust control of stochastic systems. One of the main features is its coverage of jump Markovian systems. ... Overall, this book presents results taking into consideration both white noise and Markov chain perturbations. It is clearly written and should be useful for people working in applied mathematics and in control and systems theory. The references cited provide further reading sources. (George Yin, Mathematical Reviews, Issue 2007 m) This book considers linear time varying stochastic systems, subjected to white noise disturbances and system parameter Markovian jumping, in the context of optimal control ... robust stabilization, and disturbance attenuation. ... The material presented in the book is organized in seven chapters. ... The book is very well written and organized. ... is a valuable reference for all researchers and graduate students in applied mathematics and control engineering interested in linear stochastic time varying control systems with Markovian parameter jumping and white noise disturbances. (Zoran Gajic, SIAM Review, Vol. 49 (3), 2007)