Robust Observer-Based Fault Diagnosis for Nonlinear Systems Using MATLAB®


Book Description

This book introduces several observer-based methods, including: • the sliding-mode observer • the adaptive observer • the unknown-input observer and • the descriptor observer method for the problem of fault detection, isolation and estimation, allowing readers to compare and contrast the different approaches. The authors present basic material on Lyapunov stability theory, H¥ control theory, sliding-mode control theory and linear matrix inequality problems in a self-contained and step-by-step manner. Detailed and rigorous mathematical proofs are provided for all the results developed in the text so that readers can quickly gain a good understanding of the material. MATLAB® and Simulink® codes for all the examples, which can be downloaded from http://extras.springer.com, enable students to follow the methods and illustrative examples easily. The systems used in the examples make the book highly relevant to real-world problems in industrial control engineering and include a seventh-order aircraft model, a single-link flexible joint robot arm and a satellite controller. To help readers quickly find the information they need and to improve readability, the individual chapters are written so as to be semi-independent of each other. Robust Oberserver-Based Fault Diagnosis for Nonlinear Systems Using MATLAB® is of interest to process, aerospace, robotics and control engineers, engineering students and researchers with a control engineering background.




Fault Detection and Fault-Tolerant Control Using Sliding Modes


Book Description

Fault Detection and Fault-tolerant Control Using Sliding Modes is the first text dedicated to showing the latest developments in the use of sliding-mode concepts for fault detection and isolation (FDI) and fault-tolerant control in dynamical engineering systems. It begins with an introduction to the basic concepts of sliding modes to provide a background to the field. This is followed by chapters that describe the use and design of sliding-mode observers for FDI using robust fault reconstruction. The development of a class of sliding-mode observers is described from first principles through to the latest schemes that circumvent minimum-phase and relative-degree conditions. Recent developments have shown that the field of fault tolerant control is a natural application of the well-known robustness properties of sliding-mode control. A family of sliding-mode control designs incorporating control allocation, which can deal with actuator failures directly by exploiting redundancy, is presented. Various realistic case studies, specifically highlighting aircraft systems and including results from the implementation of these designs on a motion flight simulator, are described. A reference and guide for researchers in fault detection and fault-tolerant control, this book will also be of interest to graduate students working with nonlinear systems and with sliding modes in particular. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.




Observer-Based Fault Estimation Techniques


Book Description

This book investigates observer-fault estimation techniques in detail, while also highlighting recent research and findings regarding fault estimation. Many practical control systems are subject to possible malfunctions, which may cause significant performance loss or even system instability. To improve the reliability, performance and safety of dynamical systems, fault diagnosis techniques are now receiving considerable attention, both in research and applications, and have been the subject of intensive investigations. Fault detection – the essential first step in fault diagnosis – is a binary decision-making process used to determine whether or not a fault has occurred. In turn, fault isolation is used to identify the location of the faulty component, while fault estimation is used to identify the size of the fault online. Compared with the problems involved in fault detection and isolation, fault estimation is considerably more challenging.




Robust Model-Based Fault Diagnosis for Dynamic Systems


Book Description

There is an increasing demand for dynamic systems to become more safe and reliable. This requirement extends beyond the normally accepted safety-critical systems of nuclear reactors and aircraft where safety is paramount important, to systems such as autonomous vehicles and fast railways where the system availability is vital. It is clear that fault diagnosis (including fault detection and isolation, FDI) has been becoming an important subject in modern control theory and practice. For example, the number of papers on FDI presented in many control-related conferences has been increasing steadily. The subject of fault detection and isolation continues to mature to an established field of research in control engineering. A large amount of knowledge on model-based fault diagnosis has been ac cumulated through the literature since the beginning of the 1970s. However, publications are scattered over many papers and a few edited books. Up to the end of 1997, there is no any book which presents the subject in an unified framework. The consequence of this is the lack of "common language", dif ferent researchers use different terminology. This problem has obstructed the progress of model-based FDI techniques and has been causing great concern in research community. Many survey papers have been published to tackle this problem. However, a book which presents the materials in a unified format and provides a comprehensive foundation of model-based FDI is urgently needed.




Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems


Book Description

This book presents selected fault diagnosis and fault-tolerant control strategies for non-linear systems in a unified framework. In particular, starting from advanced state estimation strategies up to modern soft computing, the discrete-time description of the system is employed Part I of the book presents original research results regarding state estimation and neural networks for robust fault diagnosis. Part II is devoted to the presentation of integrated fault diagnosis and fault-tolerant systems. It starts with a general fault-tolerant control framework, which is then extended by introducing robustness with respect to various uncertainties. Finally, it is shown how to implement the proposed framework for fuzzy systems described by the well-known Takagi–Sugeno models. This research monograph is intended for researchers, engineers, and advanced postgraduate students in control and electrical engineering, computer science, as well as mechanical and chemical engineering.




Fault Detection and Diagnosis in Nonlinear Systems


Book Description

The high reliability required in industrial processes has created the necessity of detecting abnormal conditions, called faults, while processes are operating. The term fault generically refers to any type of process degradation, or degradation in equipment performance because of changes in the process's physical characteristics, process inputs or environmental conditions. This book is about the fundamentals of fault detection and diagnosis in a variety of nonlinear systems which are represented by ordinary differential equations. The fault detection problem is approached from a differential algebraic viewpoint, using residual generators based upon high-gain nonlinear auxiliary systems (‘observers’). A prominent role is played by the type of mathematical tools that will be used, requiring knowledge of differential algebra and differential equations. Specific theorems tailored to the needs of the problem-solving procedures are developed and proved. Applications to real-world problems, both with constant and time-varying faults, are made throughout the book and include electromechanical positioning systems, the Continuous Stirred Tank Reactor (CSTR), bioreactor models and belt drive systems, to name but a few.




Model Based Fault Diagnosis in Complex Control Systems


Book Description

This thesis deals with model based fault diagnosis problems for several classes of systems with complexities such as uncertainties and nonlinearities. To deal with system complexities, robust and adaptive approaches are used as the main tools. To focus more on fault isolation and estimation, novel observer and output estimator based fault diagnosis schemes are proposed. Chapters 2 to 4 employ robust approaches to deal with complexities such as nonlinearities and nonparametric uncertainties. Robust observers, that is, Unknown Input Observers (UIOs) and Sliding Mode Observers (SMOs), are designed to solve fault diagnosis problems for Lipschitz nonlinear systems and Takagi-Sugeno fuzzy system represented uncertain nonlinear systems. UIO and SMO based fault diagnosis schemes, whose main novelty lies in the fault isolation, are proposed. Chapters 5 and 6 also use robust approaches to attack more challenging complexities such as unmatched uncertainties. A novel idea which advocates output estimator design and abandons the state observer design is proposed. Robust output estimator based fault diagnosis schemes are developed for a class of linear systems with both matched and unmatched non-parametric uncertainties. The output estimator approach is extended to a more general class of linear systems, and a high-order sliding mode differentiator based actuator fault diagnosis scheme is designed, which is the first in fault diagnosis. Chapters 7 and 8 use adaptive approaches to cope with complexities such as parametric uncertainties. Adaptive output estimator based fault diagnosis schemes are designed for sensor and actuator fault diagnosis problems in unknown linear Multi-Input Multi-Output (MIMO) and Multi-Input Single-Output (MISO) systems. A novel idea involving integration of fault isolation design functions into controller designs is put forward in actuator fault diagnosis. The results in this thesis demonstrate that: 1) the proposed robust observer based fault diagnosis schemes are powerful in dealing with matched uncertainties and certain types of nonlinearities; 2) the proposed robust output estimator (and output derivative estimator) based fault diagnosis schemes are powerful in counteracting unmatched non-parametric uncertainties; and 3) the adaptive output estimator approach is very promising and powerful in coping with parametric uncertainties. The thesis concludes by discussing important open problems for future research.




Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems


Book Description

This monograph presents a variety of techniques that can be used for designing robust fault diagnosis schemes for non-linear systems. The introductory part of the book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. Subsequently, advanced robust observer structures are presented. Parameter estimation based techniques are discussed as well. A particular attention is drawn to experimental design for fault diagnosis. The book also presents a number of robust soft computing approaches utilizing evolutionary algorithms and neural networks. All approaches described in this book are illustrated by practical applications.