Planning Algorithms


Book Description

Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning, but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the 'configuration spaces' of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. This text and reference is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.




Advanced UAV Aerodynamics, Flight Stability and Control


Book Description

Comprehensively covers emerging aerospace technologies Advanced UAV aerodynamics, flight stability and control: Novel concepts, theory and applications presents emerging aerospace technologies in the rapidly growing field of unmanned aircraft engineering. Leading scientists, researchers and inventors describe the findings and innovations accomplished in current research programs and industry applications throughout the world. Topics included cover a wide range of new aerodynamics concepts and their applications for real world fixed-wing (airplanes), rotary wing (helicopter) and quad-rotor aircraft. The book begins with two introductory chapters that address fundamental principles of aerodynamics and flight stability and form a knowledge base for the student of Aerospace Engineering. The book then covers aerodynamics of fixed wing, rotary wing and hybrid unmanned aircraft, before introducing aspects of aircraft flight stability and control. Key features: Sound technical level and inclusion of high-quality experimental and numerical data. Direct application of the aerodynamic technologies and flight stability and control principles described in the book in the development of real-world novel unmanned aircraft concepts. Written by world-class academics, engineers, researchers and inventors from prestigious institutions and industry. The book provides up-to-date information in the field of Aerospace Engineering for university students and lecturers, aerodynamics researchers, aerospace engineers, aircraft designers and manufacturers.







NASA Formal Methods


Book Description

This book constitutes the refereed proceedings of the Fourth International Symposium on NASA Formal Methods, NFM 2012, held in Norfolk, VA, USA, in April 2012. The 36 revised regular papers presented together with 10 short papers, 3 invited talks were carefully reviewed and selected from 93 submissions. The topics are organized in topical sections on theorem proving, symbolic execution, model-based engineering, real-time and stochastic systems, model checking, abstraction and abstraction refinement, compositional verification techniques, static and dynamic analysis techniques, fault protection, cyber security, specification formalisms, requirements analysis and applications of formal techniques.




Lighter than Air Robots


Book Description

An aerial robot is a system capable of sustained flight with no direct human control and able to perform a specific task. A lighter than air robot is an aerial robot that relies on the static lift to balance its own weight. It can also be defined as a lighter than air unmanned aerial vehicle or an unmanned airship with sufficient autonomy. Lighter than air systems are particularly appealing since the energy to keep them airborne is small. They are increasingly considered for various tasks such as monitoring, surveillance, advertising, freight carrier, transportation. This book familiarizes readers with a hierarchical decoupled planning and control strategy that has been proven efficient through research. It is made up of a hierarchy of modules with well defined functions operating at a variety of rates, linked together from top to bottom. The outer loop, closed periodically, consists of a discrete search that produces a set of waypoints leading to the goal while avoiding obstacles and weighed regions. The second level smoothes this set so that the generated paths are feasible given the vehicle's velocity and accelerations limits. The third level generates flyable, timed trajectories and the last one is the tracking controller that attempts to minimize the error between the robot measured trajectory and the reference trajectory. This hierarchy is reflected in the structure and content of the book. Topics treated are: Modelling, Flight Planning, Trajectory Design and Control. Finally, some actual projects are described in the appendix. This volume will prove useful for researchers and practitioners working in Robotics and Automation, Aerospace Technology, Control and Artificial Intelligence.




Modelling and Control of Mini-Flying Machines


Book Description

Problems in the motion control of aircraft are of perennial interest to the control engineer as they tend to be of complex and nonlinear nature. Modelling and Control of Mini-Flying Machines is an exposition of models developed for various types of mini-aircraft: • planar Vertical Take-off and Landing aircraft; • helicopters; • quadrotor mini-rotorcraft; • other fixed-wing aircraft; • blimps. For each of these it propounds: • detailed models derived from Euler-Lagrange methods; • appropriate nonlinear control strategies and convergence properties; • real-time experimental comparisons of the performance of control algorithms; • review of the principal sensors, on-board electronics, real-time architecture and communications systems for mini-flying machine control, including discussion of their performance; • detailed explanation of the use of the Kalman filter to flying machine localization. To researchers and students in nonlinear control and its applications Modelling and Control of Mini-Flying Machines provides valuable insights to the application of real-time nonlinear techniques in an always challenging area. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.




Advances in Guidance, Navigation and Control


Book Description

This book features the latest theoretical results and techniques in the field of guidance, navigation, and control (GNC) of vehicles and aircrafts. It covers a wide range of topics, including but not limited to, intelligent computing communication and control; new methods of navigation, estimation and tracking; control of multiple moving objects; manned and autonomous unmanned systems; guidance, navigation and control of miniature aircraft; and sensor systems for guidance, navigation and control etc. Presenting recent advances in the form of illustrations, tables, and text, it also provides detailed information of a number of the studies, to offer readers insights for their own research. In addition, the book addresses fundamental concepts and studies in the development of GNC, making it a valuable resource for both beginners and researchers wanting to further their understanding of guidance, navigation, and control.




Advances in Dynamics, Optimization and Computation


Book Description

This book presents a collection of papers on recent advances in problems concerning dynamics, optimal control and optimization. In many chapters, computational techniques play a central role. Set-oriented techniques feature prominently throughout the book, yielding state-of-the-art algorithms for computing general invariant sets, constructing globally optimal controllers and solving multi-objective optimization problems.




Automated Technology for Verification and Analysis


Book Description

This book constitutes the refereed proceedings of the 15th International Symposium on Automated Technology for Verification and Analysis, ATVA 2017, held in Pune, India, in October 2017. The 22 full and 7 short papers presented in this volume were carefully reviewed and selected from 78 submissions. The book also contains one invited talk in full-paper length. The contributions are organized in topical sections named: program analysis; model checking and temporal logics; neural networks; learning and invariant synthesis; and hybrid systems and control.




Intelligent Autonomous Systems 13


Book Description

This book describes the latest research accomplishments, innovations, and visions in the field of robotics as presented at the 13th International Conference on Intelligent Autonomous Systems (IAS), held in Padua in July 2014, by leading researchers, engineers, and practitioners from across the world. The contents amply confirm that robots, machines, and systems are rapidly achieving intelligence and autonomy, mastering more and more capabilities such as mobility and manipulation, sensing and perception, reasoning, and decision making. A wide range of research results and applications are covered, and particular attention is paid to the emerging role of autonomous robots and intelligent systems in industrial production, which reflects their maturity and robustness. The contributions have been selected through a rigorous peer-review process and contain many exciting and visionary ideas that will further galvanize the research community, spurring novel research directions. The series of biennial IAS conferences commenced in 1986 and represents a premiere event in robotics.