Robust Stabilisation and H_ Problems


Book Description

OO It is a matter of general consensus that in the last decade the H _ optimization for robust control has dominated the research effort in control systems theory. Much attention has been paid equally to the mathematical instrumentation and the computational aspects. There are several excellent monographs that cover the standard topics in the area. Among the recent issues we have to cite here Linear Robust Control authored by Green and Limebeer (Prentice Hall 1995), Robust Controller Design Using Normalized Coprime Factor Plant Descriptions - by McFarlane and Glover (Springer Verlag 1989), Robust and Optimal Control - by Zhou, Doyle and Glover (Prentice Hall 1996). Thus, when the authors of the present monograph decided to start the work they were confronted with a very rich literature on the subject. However two reasons motivated their initiative. The first concerns the theory in which the whole development of the book was embedded. As is well known, there are several ways of approach oo ing H and robust control theory. Here we mention three relevant direc tions chronologically ordered: a) the first makes use of a generalization of the Beurling-Lax theorem to Krein spaces; b) the second makes use of a generalization of Nevanlinna-Pick interpolation theory and commutant lifting theorem; c) the third, and probably the most attractive from an el evate engineering viewpoint, is the two Riccati equations based approach which offers a complete solution in state space form.




Robust and H_ Control


Book Description

H-infinity control theory deals with the minimization of the H-norm of the transfer matrix from an exogenous disturbance to a pertinent controlled output of a given plant. This comprehensive book examines both the theoretical and practical aspects of H-infinity control from the angle of the structural properties of linear systems.




Essentials of Robust Control


Book Description

Based upon the popular Robust and Optimal Control by Zhou, et al. (PH, 1995), this book offers a streamlined approach to robust control that reflects the most recent topics and developments in the field. It features coverage of state-of-the-art topics, including gap metric, v-gap metric, model validation, and real mu.




Optimal and Robust Control


Book Description

While there are many books on advanced control for specialists, there are few that present these topics for nonspecialists. Assuming only a basic knowledge of automatic control and signals and systems, Optimal and Robust Control: Advanced Topics with MATLAB® offers a straightforward, self-contained handbook of advanced topics and tools in automatic control. Techniques for Controlling System Performance in the Presence of Uncertainty The book deals with advanced automatic control techniques, paying particular attention to robustness—the ability to guarantee stability in the presence of uncertainty. It explains advanced techniques for handling uncertainty and optimizing the control loop. It also details analytical strategies for obtaining reduced order models. The authors then propose using the Linear Matrix Inequalities (LMI) technique as a unifying tool to solve many types of advanced control problems. Topics covered include: LQR and H-infinity approaches Kalman and singular value decomposition Open-loop balancing and reduced order models Closed-loop balancing Passive systems and bounded-real systems Criteria for stability control This easy-to-read text presents the essential theoretical background and provides numerous examples and MATLAB exercises to help the reader efficiently acquire new skills. Written for electrical, electronic, computer science, space, and automation engineers interested in automatic control, this book can also be used for self-study or for a one-semester course in robust control.




Robust and Optimal Control


Book Description

Class-tested at major institutions around the world, this work offers complete coverage of robust and H control. It features clear coverage of methodology, and provides detailed treatment of topics including Riccati equations, m theory, H loopshaping and controller reduction.




Control and Estimation of Piecewise Affine Systems


Book Description

As a powerful tool to study nonlinear systems and hybrid systems, piecewise affine (PWA) systems have been widely applied to mechanical systems. Control and Estimation of Piecewise Affine Systems presents several research findings relating to the control and estimation of PWA systems in one unified view. Chapters in this title discuss stability results of PWA systems, using piecewise quadratic Lyapunov functions and piecewise homogeneous polynomial Lyapunov functions. Explicit necessary and sufficient conditions for the controllability and reachability of a class of PWA systems are considered along with controller and estimator design methods for PWA systems using linear matrix inequality (LMI) and bilinear matrix inequality (BMI) techniques. A PWA approach to a class of Takagi-Sugeno fuzzy system is discussed in depth. The book uses a number of mechanical systems, such as disk servo systems to illustrate the advantages of the proposed methods. - Provides new insights on properties of PWA systems, including stability, stabilizability, reachability and controllability - Presents a unified framework for analysis and synthesis of both continuous-time and discrete-time PWA systems - Presents novel approaches for stability analysis and control design based on the promising SOS techniques




Robust Adaptive Control


Book Description

Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.




Robust Control


Book Description

Crucial in the analysis and design of control systems, this book presents a unified approach to robust stability theory, including both linear and nonlinear systems, and provides a self-contained and complete account of the available results in the field of robust control under parametric uncertainty.




Robust Control Design Using H-∞ Methods


Book Description

This is a unified collection of important recent results for the design of robust controllers for uncertain systems, primarily based on H8 control theory or its stochastic counterpart, risk sensitive control theory. Two practical applications are used to illustrate the methods throughout.




Robust Control Design with MATLAB®


Book Description

Shows readers how to exploit the capabilities of the MATLAB® Robust Control and Control Systems Toolboxes to the fullest using practical robust control examples.