Robust Systems Theory and Applications


Book Description

Designed as a university textbook, this text on robust systems theory includes problems with every chapter, a solutions manual and Matlab files containing worked examples.




Robust Control


Book Description

Comprehensive and up to date coverage of robust control theory and its application • Presented in a well-planned and logical way • Written by a respected leading author, with extensive experience in robust control • Accompanying website provides solutions manual and other supplementary material




Robust Control Systems


Book Description

Self-contained introduction to control theory that emphasizes on the most modern designs for high performance and robustness. It assumes no previous coursework and offers three chapters of key topics summarizing classical control. To provide readers with a deeper understanding of robust control theory than would be otherwise possible, the text incorporates mathematical derivations and proofs. Includes many elementary examples and advanced case studies using MATLAB Toolboxes.




A Course in Robust Control Theory


Book Description

During the 90s robust control theory has seen major advances and achieved a new maturity, centered around the notion of convexity. The goal of this book is to give a graduate-level course on this theory that emphasizes these new developments, but at the same time conveys the main principles and ubiquitous tools at the heart of the subject. Its pedagogical objectives are to introduce a coherent and unified framework for studying the theory, to provide students with the control-theoretic background required to read and contribute to the research literature, and to present the main ideas and demonstrations of the major results. The book will be of value to mathematical researchers and computer scientists, graduate students planning to do research in the area, and engineering practitioners requiring advanced control techniques.




Robust Control


Book Description

The Robust Control Theory involves powerful methods for analysis and design of control systems in presence of signal and parameter uncertainties. The most frequently used techniques for robust control design are the H? design and the ?-synthesis. In this book, Chapter One reviews issues related to the design and practical implementation of high order robust controllers. Chapter Two deals with multi-objective disturbance attenuation control and filtering problems for disturbances from different classes. Chapter Three discusses a robust control design for general switched affine control systems. Chapter Four presents a PID control scheme for a synchronous motor with permanent magnets.




Robust Control of Uncertain Dynamic Systems


Book Description

This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the “real world” system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework. Illustrates various systems level methodologies with examples and applications drawn from aerospace, electrical and mechanical engineering. Provides connections between lyapunov-based matrix approach and the transfer function based polynomial approaches. Robust Control of Uncertain Dynamic Systems: A Linear State Space Approach is an ideal book for first year graduate students taking a course in robust control in aerospace, mechanical, or electrical engineering.




Robust Control in Power Systems


Book Description

Robust Control in Power Systems deals with the applications of new techniques in linear system theory to control low frequency oscillations in power systems. The book specifically focuses on the analysis and damping of inter-area oscillations in the systems which are in the range of 0.2-1 Hz. The damping control action is injected through high power electronic devices known as flexible AC transmission system (FACTS) controllers. Three commonly used FACTS controllers: controllable series capacitors (CSCs) controllable phase shifters (CPSs) and static var compensators (SVCs) have been used in this book to control the inter-area oscillations. The overview of linear system theory from the perspective of power system control is explained through examples. The damping control design is formulated as norm optimization problem. The H_infinity, H2 norm of properly defined transfer functions are minimized in linear matrix inequalities (LMI) framework to obtain desired performance and stability robustness. Both centralized and decentralized control structures are used. Usually the transmission of feedback signal from a remote location encounters delays making it difficult to control the system. Smith predictor based approach has been successfully explored in this book as a solution to such a problem. Robust Control in Power Systems will be valuable to academicians in the areas of power, control and system theory, as well as professionals in the power industry.




Advanced Control Systems


Book Description

Advanced Control Systems: Theory and Applications provides an overview of advanced research lines in control systems as well as in design, development and implementation methodologies for perspective control systems and their components in different areas of industrial and special applications. It consists of extended versions of the selected papers presented at the XXV International Conference on Automatic Control “Automatics 2018” (September 18-19, 2018, Lviv, Ukraine) which is the main Ukrainian Control Conference organized by Ukrainian Association on Automatic Control (National member organization of IFAC) and Lviv National University “Lvivska Politechnica”. More than 100 papers were presented at the conference with topics including: mathematical problems of control, optimization and game theory; control and identification under uncertainty; automated control of technical, technological and biotechnical objects; controlling the aerospace craft, marine vessels and other moving objects; intelligent control and information processing; mechatronics and robotics; information measuring technologies in automation; automation and IT training of personnel; the Internet of things and the latest technologies. The book is divided into two main parts, the first concerning theory (7 chapters) and the second concerning applications (7 chapters) of advanced control systems. The first part “Advances in Theoretical Research on Automatic Control” consists of theoretical research results which deal with descriptor control impulsive delay systems, motion control in condition of conflict, inverse dynamic models, invariant relations in optimal control, robust adaptive control, bio-inspired algorithms, optimization of fuzzy control systems, and extremal routing problem with constraints and complicated cost functions. The second part “Advances in Control Systems Applications” is based on the chapters which consider different aspects of practical implementation of advanced control systems, in particular, special cases in determining the spacecraft position and attitude using computer vision system, the spacecraft orientation by information from a system of stellar sensors, control synthesis of rotational and spatial spacecraft motion at approaching stage of docking, intelligent algorithms for the automation of complex biotechnical objects, an automatic control system for the slow pyrolysis of organic substances with variable composition, simulation complex of hierarchical systems based on the foresight and cognitive modelling, and advanced identification of impulse processes in cognitive maps. The chapters have been structured to provide an easy-to-follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area. This book may be useful for researchers and students who are interesting in advanced control systems.




Robust Control of Time-delay Systems


Book Description

Recently, there have been significant developments in robust control of time-delay systems. This volume presents a systematic treatment of robust control for such systems in the frequency domain. The emphasis is on systems with a single input or output delay, although the delay-free part of the plant can be multi-input-multi-output, in which case the delays in different channels should be the same. The author covers the whole range of H-infinity control of time-delay systems: from controller parameterization implementation; from the Nehari problem to the four-block problem; from theoretical developments to practical issues. The major tools used are similarity transformation, the chain-scattering approach and J-spectral factorization. Self-contained, "Robust Control of Time-delay Systems" will interest control theorists and mathematicians working with time-delay systems. Its methodical approach will be of value to graduates studying general robust control theory or its applications in time-delay systems.




Robust Control System Networks


Book Description

From the researcher who was one of the first to identify and analyze the infamous industrial control system malware "Stuxnet," comes a book that takes a new, radical approach to making Industrial control systems safe from such cyber attacks: design the controls systems themselves to be "robust." Other security experts advocate risk management, implementing more firewalls and carefully managing passwords and access. Not so this book: those measures, while necessary, can still be circumvented. Instead, this book shows in clear, concise detail how a system that has been set up with an eye toward quality design in the first place is much more likely to remain secure and less vulnerable to hacking, sabotage or malicious control. It blends several well-established concepts and methods from control theory, systems theory, cybernetics and quality engineering to create the ideal protected system. The book's maxim is taken from the famous quality engineer William Edwards Deming, "If I had to reduce my message to management to just a few words, I'd say it all has to do with reducing variation." Highlights include: - An overview of the problem of "cyber fragility" in industrial control systems - How to make an industrial control system "robust," including principal design objectives and overall strategic planning - Why using the methods of quality engineering like the Taguchi method, SOP and UML will help to design more "armored" industrial control systems.