Rock Mechanics and Rock Engineering


Book Description

The two-volume set Rock Mechanics and Rock Engineering is concerned with the application of the principles of mechanics to physical, chemical and electro-magnetic processes in the upper-most layers of the earth and the design and construction of the rock structures associated with civil engineering and exploitation or extraction of natural resources in mining and petroleum engineering. Volume 2, Applications of Rock Mechanics – Rock Engineering, discusses the applications of rock mechanics to engineering structures in/on rock, rock excavation techniques and in-situ monitoring techniques, giving some specific examples. The dynamic aspects associated with the science of earthquakes and their effect on rock structures, and the characteristics of vibrations induced by machinery, blasting and impacts as well as measuring techniques are described. Furthermore, the degradation and maintenance processes in rock engineering are explained. Rock Mechanics and Rock Engineering is intended to be a fundamental resource for younger generations and newcomers and a reference book for experts specialized in Rock Mechanics and Rock Engineering and associated with the fields of mining, civil and petroleum engineering, engineering geology, and/or specialized in Geophysics and concerned with earthquake science and engineering.




Rock Mechanics and Engineering Volume 1


Book Description

Principles is the first volume of the five-volume set Rock Mechanics and Engineering and contains twenty-four chapters from key experts in the following fields: - Discontinuities; - Anisotropy; - Rock Stress; - Geophysics; - Strength Criteria; - Modeling Rock Deformation and Failure. The five-volume set “Comprehensive Rock Engineering”, which was published in 1993, has had an important influence on the development of rock mechanics and rock engineering. Significant and extensive advances and achievements in these fields over the last 20 years now justify the publishing of a comparable, new compilation. Rock Mechanics and Engineering represents a highly prestigious, multi-volume work edited by Professor Xia-Ting Feng, with the editorial advice of Professor John A. Hudson. This new compilation offers an extremely wideranging and comprehensive overview of the state-of-the-art in rock mechanics and rock engineering and is composed of peer-reviewed, dedicated contributions by all the key experts worldwide. Key features of this set are that it provides a systematic, global summary of new developments in rock mechanics and rock engineering practices as well as looking ahead to future developments in the fields. Contributors are worldrenowned experts in the fields of rock mechanics and rock engineering, though younger, talented researchers have also been included. The individual volumes cover an extremely wide array of topics grouped under five overarching themes: Principles (Vol. 1), Laboratory and Field Testing (Vol. 2), Analysis, Modelling and Design (Vol. 3), Excavation, Support and Monitoring (Vol. 4) and Surface and Underground Projects (Vol. 5). This multi-volume work sets a new standard for rock mechanics and engineering compendia and will be the go-to resource for all engineering professionals and academics involved in rock mechanics and engineering for years to come.




Rock Engineering Design


Book Description

Given the recent advances in site investigation techniques, computing, access to information and monitoring, plus the current emphasis on safety, accountability and sustainability, this book introduces an up-to-date methodology for the design of all types of rock engineering projects, whether surface or underground. Guidance is provided on the natu




Rock Mechanics and Engineering Volume 4


Book Description

Excavation, Support and Monitoring is the fourth volume of the five-volume set Rock Mechanics and Engineering and contains twenty-three chapters from key experts in the following fields - Excavation Methods; - Support Technology; - Monitoring Technology; - Integrated Engineering Monitoring and Analysis. The five-volume set “Comprehensive Rock Engineering”, which was published in 1993, has had an important influence on the development of rock mechanics and rock engineering. Significant and extensive advances and achievements in these fields over the last 20 years now justify the publishing of a comparable, new compilation. Rock Mechanics and Engineering represents a highly prestigious, multi-volume work edited by Professor Xia-Ting Feng, with the editorial advice of Professor John A. Hudson. This new compilation offers an extremely wide-ranging and comprehensive overview of the state-of-the-art in rock mechanics and rock engineering and is composed of peer-reviewed, dedicated contributions by all the key experts worldwide. Key features of this set are that it provides a systematic, global summary of new developments in rock mechanics and rock engineering practices as well as looking ahead to future developments in the fields. Contributors are world-renowned experts in the fields of rock mechanics and rock engineering, though younger, talented researchers have also been included. The individual volumes cover an extremely wide array of topics grouped under five overarching themes: Principles (Vol. 1), Laboratory and Field Testing (Vol. 2), Analysis, Modelling and Design (Vol. 3), Excavation, Support and Monitoring (Vol. 4) and Surface and Underground Projects (Vol. 5). This multi-volume work sets a new standard for rock mechanics and engineering compendia and will be the go-to resource for all engineering professionals and academics involved in rock mechanics and engineering for years to come.







Engineering Rock Mechanics


Book Description

Engineering rock mechanics is the discipline used to design structures built in rock. These structures encompass building foundations, dams, slopes, shafts, tunnels, caverns, hydroelectric schemes, mines, radioactive waste repositories and geothermal energy projects: in short, any structure built on or in a rock mass. Despite the variety of projects that use rock engineering, the principles remain the same. Engineering Rock Mechanics clearly and systematically explains the key principles behind rock engineering. The book covers the basic rock mechanics principles; how to study the interactions between these principles and a discussion on the fundamentals of excavation and support and the application of these in the design of surface and underground structures. Engineering Rock Mechanics is recommended as an across-the-board source of information for the benefit of anyone involved in rock mechanics and rock engineering.




Advances in Rock-Support and Geotechnical Engineering


Book Description

Advances in Rock-Support and Geotechnical Engineering brings together the latest research results regarding the theory of rock mechanics, its analytical methods and innovative technologies, and its applications in practical engineering. This book is divided into six sections, rock tests, rock bolting, grouted anchor, tunneling engineering, slope engineering, and mining engineering. Coverage includes fracture hinged arching process and instability characteristics of rock plates, failure modes of rock bolting, scale effects, and loading transfer mechanism of the grouted anchor. Also covered are recent innovations and applications in tunneling engineering, slope engineering, and mining engineering. This book provides innovative, practical, and rich content that can be used as a valuable reference for researchers undertaking tunneling engineering, slope engineering, mining engineering, and rock mechanics, and for onsite technical personnel and teachers and students studying the topics in related universities. - Enriches new theories on failure modes of rock plates, rock bolting mechanisms, and anchor loading transfer - Develops new methods of evaluating the stability of slope engineering and the roof stability of the mined-out areas - Includes fracture hinged arching process and instability characteristics of rock plates, failure modes of rock bolting, scale effects, and loading transfer mechanism of the grouted anchor




Rock Mechanics


Book Description

Rock mechanics is a field of applied science which has become recognised as a coherent engineering discipline within the last two decades. It consists of a body of knowledge of the mechanical properties of rock, various techniques for the analysis of rock stress under some imposed perturbation, a set of established principles expressing rock mass response to load, and a logical methodology for applying these notions and techniques to real physical prob lems. Some of the areas where application of rock mechanics concepts have been demonstrated to be of industrial value include surface and subsurface construction, mining and other methods of mineral recovery, geothermal energy recovery and subsurface hazardous waste isolation. In many cases, the pressures of industrial demand for rigour and precision in project or process design have led to rapid evolution of the engineering discipline, and general improvement in its basis in both the geosciences and engineering mechanics. An intellectual commitment in some outstanding research centres to the proper development of rock mechanics has now resulted in a capacity for engineering design in rock not conceivable two decades ago. Mining engineering is an obvious candidate for application of rock mechanics principles in the design of excavations generated by mineral extrac tion. A primary concern in mining operations, either on surface or underground, is loosely termed 'ground control', i. e.




Engineering Behaviour of Rocks


Book Description

The first edition of this book was received more kindly than it deserved by some, and with some scepticism by others. It set out to present a simple, concise and reasonably comprehensive introduction to some of the theoretical and empirical criteria which may be used to define rock as a structural material. The objectives - reinforced by the change in title - remain the same, but the approach has been changed considerably and only one or two sections have been retained from the first edition. The particular aim in this edition is to provide a description of the mechanical behaviour of rocks, based firmly upon experimental data, which can be used to explain how rocks deform, fracture and yield, and to show how this knowledge can be used in design. The major emphasis is on the behaviour of rocks as materials, although in the later chapters the behaviour of discontinuities in rocks, and the way in of rock masses, is considered. which this can affect the behaviour If this edition is an improvement on the first edition it reflects the debt lowe to numerous people who have attempted to explain the rudiments of the subject to me. I should like to thank Peter Attewell and Roy Scott in particular. I should also like to thank Tony Price and Mike Gilbert whose work at Newcastle I have used shamelessly.




Design Analysis in Rock Mechanics


Book Description

In a straightforward manner and with plenty of illustrations, this textbook approaches important design issues in rock mechanics from a mechanics of materials foundation. It addresses rock slope stability in surface excavations, shaft and tunnel stability, and entries and pillars. The book also covers three-dimensional caverns with an emphasis of b