Rockburst


Book Description

Rockburst: Mechanisms, Monitoring, Warning and Mitigation invites the most relevant researchers and practitioners worldwide to discuss the rock mechanics phenomenon related to increased stress and energy levels in intact rock introduced by drilling, explosion, blasting and other activities. When critical energy levels are reached, rockbursts can occur causing human and material losses in mining and tunneling environments. This book is the most comprehensive information source in English to cover rockbursts. Comprised of four main parts, the book covers in detail the theoretical concepts related to rockbursts, and introduces the current computational modeling techniques and laboratory tests available. The second part is devoted to case studies in mining (coal and metal) and tunneling environments worldwide. The third part covers the most recent advances in measurement and monitoring. Special focus is given to the interpretation of signals and reliability of systems. The following part addresses warning and risk mitigation through the proposition of a single risk assessment index and a comprehensive warning index to portray the stress status of the rock and a successful case study. The final part of the book discusses mitigation including best practices for distressing and efficiently supporting rock. Designed to provide the most comprehensive coverage, the book will provide practicing mining and tunneling engineers the theoretical background needed to better cope with the phenomenon, practical advice from case studies and practical mitigation actions and techniques. Academics in rock mechanics will appreciate this complete reference to rockburst, which features how to analyze stress signals and use computational modeling more efficiently. - Offers understanding of the fundamental theoretical concepts of rockbursts - Explores how to analyze signals from current monitoring systems - Shows how to apply mitigating techniques in current work - Identifies characteristics that should be measured in order to detect rockburst risk







Rockbursts and Seismicity in Mines 93


Book Description

These proceedings include the latest developments in research and practice in the area of mining-induced seismicity. Three themes are explored: strong ground motion and rockburst hazard; mechanics of seismic events and stochastic methods; and monitoring of seismicity and geomechanical modelling.




Rockbursts


Book Description

Using a series of case studies, this essential reference documents the experiences of 15 of the most rockburst-prone mines in the U.S. and Canada over the last century. The book provides an historical analysis of rockburst activity along with state-of-the-art strategies for anticipating and preventing this dangerous and disruptive phenomenon.




Assessment and Prevention of Failure Phenomena in Rock Engineering


Book Description

First published in 1993. This volume is a collection of papers addressing the issue of the failure of rock engineering structures. This phenomenon occurs in different forms depending on the geometry of structure, material properties of intact rock, structure of rock mass, environmental conditions and initial state of stress.




Rockburst Evolutionary Process and Energy Dissipation Characteristics


Book Description

This book investigates the evolution process of rockburst based on the energy dissipation theory and proposes appropriate active prevention and control technologies. It discusses the electromagnetic radiation (EMR) generated by coal rock fractures as a measurement of the amount of dissipated energy, and the use of EMR to experimentally observe the time domain characteristics of energy dissipation during coal rock failure processes. It then proposes the concept of the rockburst activity domain system (RADS), establishes a dynamic pressure model of rockburst, and describes the energy criterion for rockburst instability. Lastly, it presents two waterjet cutting-based cases of pressure relief and rockburst prevention. The book serves as a reference resource for mine safety workers, engineering technicians, scientists, graduate students and undergraduates engaged in research on dynamic hazards such as rockburst..




Rock Stress and Earthquakes


Book Description

The evaluation of in-situ rock stress is not only important in the exploration and engineering involving rock masses for mining, hydropower, tunneling, oil and gas production, and stone quarrying, but also in the geodynamics and earthquake prediction. The methods of determining these stresses for shallow crust in the engineering practice, including




Evolution, Monitoring and Predicting Models of Rockburst


Book Description

This open access book focuses on investigating predicting precursor information and key points of rockburst in mining engineering through laboratory experiment, theoretical analysis, numerical simulation and case studies. Understanding the evolution patterns for the microstructure instability of rock is a prerequisite for rockburst prediction. The book provides a guide for readers seeking to understand the evolution patterns for the microstrucure of rock failure, the predicting key point of rock failure and the rockburst predicting model. It will be an essential reference to understand mechanism of rockburst and sheds new light on dynamic disasters prediction. Chapters are carefully developed to cover (1) The evolution patterns for the microstructure instability of rock; (2) Rockburst hazard monitoring and predicting criterion and predicting models. The book addresses the issue with a holistic and systematic approach that investigates the occurrence mechanism of rockburst based on the evolution patterns for the microstructure of rock failure and establishes the predicting model of rockburst. This book will be of interest to researchers of mining engineering, rock mechanics engineering and safety engineering.




Proceedings of the 2nd International Conference on Innovative Solutions in Hydropower Engineering and Civil Engineering


Book Description

This open access book is compilation of selected papers from 2nd International Conference on Innovative Solutions in Hydropower Engineering and Civil Engineering (HECE 2022). The work focuses on novel techniques for topics in hydropower and sustainable development, maximizing and communicating the multiple benefits of hydro, the food-water-energy nexus approach, synergy among the renewables, making hydro more competitive (managing and mitigating risk), regional development through power trading, hydropower technology, civil engineering, materials for dams and appurtenant works, advances in design and construction techniques, recent developments in dam construction, monitoring and engineering for safe structures and sites. Hydropower offers significant potential for carbon emissions reductions. The installed capacity of hydropower by the end of 2008 contributed 16% of worldwide electricity supply, and hydropower remains the largest source of renewable energy in the electricity sector. The contents make valuable contributions to academic researchers, engineers in the industry, and regulators of hydropower and civil engineering authorities.