Groundwater-induced geological disasters in underground engineering: Theoretical, experimental, and numerical approaches


Book Description

Water inrush (WI) is one of the most dangerous geological disasters in underground engineering, with significant human casualties and economic losses. To prevent and control WI disasters, great efforts have been made to address WI mechanisms for more than half a century. In particular, the seepage instability theory is hitherto one of the most widely used theoretical models. This theory portrays that the seepage system will undergo structural instability when the initial values of permeability and boundary pressure meet certain conditions, which manifests that the permeability parameter is one of the most valuable indicators to unveil WI mechanisms. However, rock permeability is determined by its internal structural characteristics, which can be affected by water chemical composition, stress environment, and temperature. In this regard, it is of great necessity and importance to facilitate a better understanding of the holistic impacts of multi-field coupling on rock internal structure and deformation failure characteristics. This Research Topic aims to initiate a global forum for presenting and disseminating the latest advancements of WI mechanisms, which entails the characterization of physical and laboratory tests, 3D reconstruction of rock internal structure, numerical approaches, theoretical models under multi-field coupling, and filed date analysis methods.




Coal and rock dynamic disasters: Advances of physical and numerical simulation in monitoring, early warning, and prevention


Book Description

With the soaring growth of global population and socioeconomy, energy consumption and demand has been rapidly rising, and coal would still remain a fundamental energy source for a long time into the future. Seeking deep coal resources becomes an inevitable trend due to the depletion of shallow coal resources. Deep mining of coal resources promotes socioeconomic development, whereas bringing a variety of security challenges. In deep underground, there is a significant risk increase in coal and rock dynamic disasters (CRDDs), owing to the changes in physical and mechanical properties of coal and rock. In this regard, it is of great importance and necessity to prevent and control CRDDs effectively and efficiently. As typical natural geological materials, coal and rock have evident inhomogeneity and anisotropy, and manifest differences in strength, deformation, permeability, and other mechanical characteristics due to their various mineral compositions, porosity, and weak structural plane. Considering the complexity of coal and rock, it is essential to carry out laboratory experiments on macroscopic mechanical responses and microscopic fracture characteristics to identify precursor information and reveal evolution mechanisms of dynamic disasters. Yet by far less is known about the combined physical and numerical simulation on multi-scale CRDDs, which hinders the development of corresponding prevention and control technologies. This Research Topic aims to initiate a global scientific and technological discussion on the cutting-edge advances of physical and numerical simulation in monitoring, early warning, and prevention of CRDDs. We welcome Original Research and Review articles addressing the following themes that include, but are not limited to: • Physical and numerical simulation on mechanisms of CRDDs • Numerical simulation on prediction of CRDDs • Numerical simulation on prevention and control of CRDDs collapse




Advances in Energy Materials and Environment Engineering


Book Description

This new book, Advances in Energy Materials and Environment Engineering, covers the timely issue of green applications of materials. It covers the diverse usages of carbon nanotubes for energy, for power, for the protection of the environment, and for new energy applications. The diverse topics in the volume include energy saving technologies, renewable energy, clean energy development, nuclear engineering and hydrogen energy, advanced power semiconductors, power systems and energy and much more. This timely book addresses the need of the hour and will prove to be valuable for environmentally conscious industry professionals, faculty and students, and researchers in materials science, engineering, and environment with interest in energy materials.




Advances in Geology and Resources Exploration


Book Description

Advances in Geology and Resources Exploration provides a collection of papers resulting from the conference on Geology and Resources Exploration (ICGRED 2022), Harbin, China, 21-23 January, 2022. The primary goal of the conference is to promote research and developmental activities in geology, resources exploration and development, and another goal is to promote scientific information interchange between scholars from the top universities, business associations, research centers and high-tech enterprises working all around the world. The conference conducted in-depth exchanges and discussions on relevant topics such as geology, resources exploration, aiming to provide an academic and technical communication platform for scholars and engineers engaged in scientific research and engineering practice in the field of engineering geology, geological resources and geothermal energy. By sharing the status of scientific research achievements and cutting-edge technologies, this helps scholars and engineers all over the world to comprehend the academic development trend and to broaden research ideas. With a view to strengthen international academic research, academic topics exchange and discussion, and promoting the industrialization cooperation of academic achievements.




Soft Rock Mechanics and Engineering


Book Description

This book offers a practical reference guide to soft rock mechanics for engineers and scientists. Written by recognized experts, it will benefit professionals, contractors, academics, researchers and students working on rock engineering projects in the fields of civil engineering, mining and construction engineering. Soft Rock Mechanics and Engineering covers a specific subject of great relevance in Rock Mechanics – and one that is directly connected to the design of geotechnical structures under difficult ground conditions. The book addresses practical issues related to the geomechanical properties of these types of rock masses and their characterization, while also discussing advances regarding in situ investigation, safety, and monitoring of geotechnical structures in soft rocks. Lastly, it presents important case histories involving tunnelling, dam foundations, coal and open pit mines and landslides.