Rogue Asteroids and Doomsday Comets


Book Description

Could a giant asteroid or comet crash into Earth and destroy life as we know it? Many astronomers who once discredited the risks are now convinced. You will be too after reading Duncan Steel's critically acclaimed examination of the evidence of Earth's encounters with killer comets and asteroids. Acclaim for Rogue Asteroids and Doomsday Comets "A chilling and utterly convincing account of a cosmic menace that must not be ignored any longer. This book is a welcome challenge to the scientific prejudice against catastrophism." --Paul Davies, author of The Mind of God "Written in clear prose for the layperson, this gripping report advocates the creation of an international search program to detect, intercept, and divert Earth-menacing asteroids and comets." --Publishers Weekly. "Steel writes clearly and ominously, and he should be listened to." --The Daily Telegraph (London) A selection of the Astronomy Book Club A Library Journal "Best Science Book of the Year" selection




Doomsday Asteroid


Book Description

Maps of The locations of asteroid craters on the earth on endpapers.




Perilous Planet Earth


Book Description

A readable account of the history of natural disasters throughout history.




Controversy Catastrophism and Evolution


Book Description

In Controversy, Trevor Palmer fully documents how traditional gradualistic views of biological and geographic evolution are giving way to a catastrophism that credits cataclysmic events, such as meteorite impacts, for the rapid bursts and abrupt transitions observed in the fossil record. According to the catastrophists, new species do not evolve gradually; they proliferate following sudden mass extinctions. Placing this major change of perspective within the context of a range of ancient debates, Palmer discusses such topics as the history of the solar system, present-day extraterrestrial threats to earth, hominid evolution, and the fossil record.




The Mathematics Of Natural Catastrophes


Book Description

This is a unique book about natural catastrophes, focusing on the mathematical aspects of these phenomena. Although academic in style and didactic in purpose, it is practical in the treatment of the diverse issues covered, which range from hazard warning and forecasting to engineering design criteria and insurance loss estimation. Addressing as it does many mathematical topics not found together in a single volume, the book should be of value to all those with a quantitative educational interest in or professional concern for natural catastrophes.




Bombarded Britain: A Search For British Impact Structures


Book Description

This book describes a search for geological evidence of meteorite impact structures in Britain. The statistics of impact structures indicate that Britain should have Phanerozoic impact structures up to tens of kilometres in diameter. A constant theme is the importance of atmospheric break-up of small asteroids and comets. These fragmenting bodies produce anomalously shallow craters with low rims and central peaks; three British structures of this type are identified.Analysis of fireball statistics implies that damaging fireball explosions occur over the British Isles on a time-scale of decades. On a time-scale of millennia, however, more damage is done by Atlantic impact tsunami.




The Tungus Event, Or the Great Siberian Meteorite


Book Description

This popular science book shares the fascination of the Tungus Event, a major mystery of the 20th century, in a factual and informed way. It provides "on-the-ground" descriptions of the site and explains the findings and the puzzlement of international scientists who have investigated it over the decades. After a brief and readable overview of comets, meteors, the sun and the solar system, the author ponders the range of possible explanations for the "great Siberian meteorite." The research is up to date, factual and scientific. While making no absurd claims to solving the puzzle, the author studies some intriguing clues in NASA's orbit diagrams for Comet Encke, and he is bold in discussing the possible causes of what was the greatest natural explosion in recorded history. As he points out, [Hypotheses] include rogue asteroids, mini black holes and even alien intervention....These explanations are not entirely equal to the facts. In the unique case of the Tunguska event, there was wholesale destruction to the mighty taiga woodlands but none of the debris that one would expect should exist from the body itself. Evidence like a strewn field of meteorite debris or meteoric dust on the trees and ground were never found, nor were any craters, in the area beneath the site of the fireball nor anywhere along the path it took. There are no craters because the Tunguska Cosmic Body (TCB) did not hit the ground. Atmospheric anomalies prior to the dramatic appearance of the fiery body puzzlingly occurred for several days, adding to the enigma. There are just a handful of English-language books on this subject. The most recent, The Tunguska Mystery, by the Russian Rubstov (Astronomers Universe, Springer Science 2009) is authoritative but highly technical and hard going for the general reader. Mr. Engledew instead tells the story in a balanced and engaging style.




Incoming Asteroid!


Book Description

‘Incoming Asteroid!’ is based on a project within ASTRA (the Association in Scotland to Research into Astronautics) to provide scientific answers to the question – what would we do if we knew there was going to be an asteroid impact in ten years’ time or less? Clearly there are many things humanity can do nothing about, for example an unseen object traveling towards us so fast that we have no time to prepare, or an object so large it may be unstoppable. A realistic hazard model was decided upon, and the scenario developed from that: an incoming object about 1 kilometer in diameter, in an orbit ranging from the outer rim of the Asteroid Belt to within that of Earth’s. Three basic possibilities are considered in this book. The first is the deflection of the asteroid, using remote probes along with a number of possible technologies to change the asteroid’s course. Second is the attempt of a manned mission, in order to plant a propulsion system on the asteroid to push it into a different orbit. Third is the nuclear option, a last-ditch attempt to break up and then disperse the asteroid using nuclear weapons. (A rather impractical combination of these second and third options were used as the plot of the popular 1998 Bruce Willis feature film, Armageddon.) Although the cost of developing the technology needed to protect the Earth would be substantial, there would certainly be spin-off benefits. These could eventually result in practical small-scale atomic energy sources, new propulsion systems that could make extraterrestrial mining within the solar system a possibility, and other as-yet unforeseen benefits. And finally, Incoming Asteroid! considers the political implications - how governments across the world should best react to the threat with a view to minimizing loss of life, and in the weeks running up to the possible impact, preventing panic in the population.




Law and Regulation of Commercial Mining of Minerals in Outer Space


Book Description

This monograph addresses the legal and policy issues relating to the commercial exploitation of natural resources in outer space. It begins by establishing the economic necessity and technical feasibility of space mining today, an estimate of the financial commitments required, followed by a risk analysis of a commercial mining venture in space, identifying the economic and legal risks. This leads to the recognition that the legal risks must be minimised to enable such projects to be financed. This is followed by a discussion of the principles of international space law, particularly dealing with state responsibility and international liability, as well as some of the issues arising from space mining activities. Much detail is devoted to the analysis of the content of the common heritage of mankind doctrine. The monograph then attempts to balance such interests in creating a legal and policy compromise to create a new regulatory regime.




Meteorite Impact!


Book Description

PART I CHAPTER 1 T E — , , . . . . . . . . . 15 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Geological change — the answers within, and without. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Man on the Moon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Back to the beginning — from the Big Bang to early Earth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Impact — the ubiquitous process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 The oldest rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Time to cool — birth of the Kaapvaal continent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Old crust in the Vredefort Dome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Rifting, oceans, volcanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Mountains, fire and ice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 The unique Bushveld magmatic event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 CHAPTER 2 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Extinction or survival — our restless Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Meteorite-impact catastrophes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Normal (background) versus mass extinctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 A brief look at the impact record in the Solar System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 What are the projectiles capable of causing an impact catastrophe?. . . . . . . . . . . . . . . . . . . . . . . 87 What is an impact crater? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 How can we identify impact structures? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Shock metamorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 CHAPTER 3 T A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Tswaing meteorite crater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Does Tswaing have a twin? (Kalkkop Crater, Eastern Cape Province) . . . . . . . . . . . . . . . . . . . . . . . 108 South Africa’ s other Giant Impact Morokweng impact structure, — North West Province . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Our southern African neighbours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Testimony of earliest impact catastrophe — Barberton and the Northern Cape Province . . 113 Traces of catastrophe in the Karoo?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6 CHAPTER 4 V : T W . . . 117 The Vredefort Structure revealed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Getting to know the giant: By road through the Vredefort Structure . . . . . . . . . . . . . . . . . . . 120 Traversing the outer parts of the Vredefort Dome (Fochville to Parys) . . . . . . . . . . . . . . . . . . 12 5 The geology of the Vredefort Dome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .