Shock Compression and Chemical Reaction of Multifunctional Energetic Structural Materials


Book Description

Shock Compression and Chemical Reaction of Multifunctional Energetic Structural Materials provides an exhaustive overview of the mechanics, kinetics and physio-chemical behavior caused by shock-induced reaction and shock compression on multifunctional energetic structural materials (MESMs). The book covers foundational knowledge on shock waves and Equation of State (EOS), shock parameters, reaction kinetics, impedance matching, and more. In addition, it looks at more advanced subjects such as experimental analysis methods, numerical modeling techniques (from quasi-static to high-strain rates, including void collapse models), how EOS changes when reaction and detonation are involved, and more. Final chapters cover how to obtain EOS curves from experiments and various testing methods and numerical models for non-reactive porous solids and particulate composites, including 1-D reactive flow models. Flyer plate impact experiments are also discussed, as are the applications of hydrocodes and Lagrangian-framework-based methods. - Provides an ideal balance of modeling concepts and experimental techniques - Looks at mechanical testing processes of MESMs - Outlines sample preparation, testing of samples, obtaining EOS from the testing, and using EOS for simulation - Covers modeling for pore collapse, constituent material, and at a granular level




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.







Metals Abstracts


Book Description










Heterostructured Materials


Book Description

Heterostructured (HS) materials represent an emerging class of materials that are expected to become a major research field for the communities of materials, mechanics, and physics in the next couple of decades. One of the biggest advantages of HS materials is that they can be produced by large-scale industrial facilities and technologies and therefore can be commercialized without the scaling up and high-cost barriers that are often encountered by other advanced materials. This book collects recent papers on the progress in the field of HS materials, especially their fundamental physics. The papers are arranged in a sequence of chapters that will help new researchers entering the field to have a quick and comprehensive understanding of HS materials, including the fundamentals and recent progress in their processing, characterization, and properties.










Metals Abstracts Index


Book Description