Role of Stem Cells in Skeletal Muscle Development, Regeneration, Repair, Aging and Disease


Book Description

Adult stem cells are responsible for tissue regeneration and repair throughout life. Their quiescence or activation are tightly regulated by common signalling pathways that often recapitulate those happening during embryonic development, and thus it is important to understand their regulation not only in postnatal life, but also during foetal development. In this regard, skeletal muscle is an interesting tissue since it accounts for a large percentage of body mass (about 40%), it is highly amenable to intervention through exercise and it is also key in metabolic and physiological changes underlying frailty susceptibility in the elderly. While muscle-resident satellite cells are responsible for all myogenic activity in physiological conditions and become senescent in old age, other progenitor cells such as mesoangioblasts do seem to contribute to muscle regeneration and repair after tissue damage. Similarly, fibro-adipogenic precursor cells seem to be key in the aberrant response that fills up the space left from atrophied muscle mass and which ends up with a dysfunctional muscle having vast areas of fatty infiltration and fibrosis. The complex interplay between these stem/progenitor cell types and their niches in normal and pathological conditions throughout life are the subjects of intense investigation. This eBook highlights recent developments on the role of stem cells in skeletal muscle function, both in prenatal and postnatal life, and their regulation by transcriptional, post-transcriptional and epigenetic mechanisms. Additionally, it includes articles on interventions associated with exercise, pathological changes in neuromuscular diseases, and stem cell aging.




Role of Stem Cells in Skeletal Muscle Development, Regeneration, Repair, Aging and Disease


Book Description

Adult stem cells are responsible for tissue regeneration and repair throughout life. Their quiescence or activation are tightly regulated by common signalling pathways that often recapitulate those happening during embryonic development, and thus it is important to understand their regulation not only in postnatal life, but also during foetal development. In this regard, skeletal muscle is an interesting tissue since it accounts for a large percentage of body mass (about 40%), it is highly amenable to intervention through exercise and it is also key in metabolic and physiological changes underlying frailty susceptibility in the elderly. While muscle-resident satellite cells are responsible for all myogenic activity in physiological conditions and become senescent in old age, other progenitor cells such as mesoangioblasts do seem to contribute to muscle regeneration and repair after tissue damage. Similarly, fibro-adipogenic precursor cells seem to be key in the aberrant response that fills up the space left from atrophied muscle mass and which ends up with a dysfunctional muscle having vast areas of fatty infiltration and fibrosis. The complex interplay between these stem/progenitor cell types and their niches in normal and pathological conditions throughout life are the subjects of intense investigation. This eBook highlights recent developments on the role of stem cells in skeletal muscle function, both in prenatal and postnatal life, and their regulation by transcriptional, post-transcriptional and epigenetic mechanisms. Additionally, it includes articles on interventions associated with exercise, pathological changes in neuromuscular diseases, and stem cell aging.




Muscle Regeneration


Book Description




Stem Cells and Aging


Book Description

Stem Cells and Aging covers what is known about the effect of time and age on the basic units of life, which are the corresponding tissue-specific or adult stem cells. Even though the concept of stem cells was introduced nearly a century ago by Alexander Maximow, modern stem-cell research began in 1963 when James Till, Ernest McCullough and Lou Siminovitch established assays to detect hematopoietic stem cells. In fact, given the importance of the aging-associated diseases, scientists have developed a keen interest in understanding the aging process as they attempt to define the role of dysfunctional stem cells in the aging process. With an aging population worldwide, understanding these age-related stem cell changes at a basic biology level and at the level of their influences for regenerative medicine is of interest and importance. There is increasing evidence that the aging process can have much adverse effects on stem cells. In the modern era, one of the emerging fields in treating human diseases is stem cell research, as stem cells have the remarkable potential to treat a wide range of diseases. Nevertheless, understanding the molecular mechanism involved in aging and deterioration of stem cell function is crucial in developing effective new therapies for aging. Serves as an ideal reference to guide investigators toward valuable answers to the problems of our aging population Addresses the effect of time and age on human stem cells Includes chapters from contributors exploring the biology of stem cell aging around the globe




Skeletal Muscle Stem Cells


Book Description

This volume looks at the latest technologies and methods--combined with new genetic tools available in animal models--used in this constantly evolving field. The chapters in this book are organized into three sections: Section one covers muscle stem cells and progenitor cells; Section Two discusses animal models for muscle stem cells and regeneration; and Section Three explores bioinformatics and imaging analysis for muscle stem cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Skeletal Muscle Stem Cells and Regeneration: Methods and Protocols is a valuable tool for all researchers looking to expand their knowledge on skeletal muscle growth, repair, degeneration, aging, and regenerative medicine.




Adult Stem Cells in Aging, Diseases and Cancer


Book Description

The functionality of adult tissue stem cells from various organ systems declines during aging. This publication summarizes novel molecular mechanisms responsible for the development of aging-associated deficiencies as discussed by leading experts during the 5th Else Kröner-Fresenius Symposium. It is the first book that explicitly focuses on molecular mechanisms of stem cell aging and its consequences for disease and cancer development including both cell-intrinsic mechanisms as well as aging-induced alterations in the stem cell niche and the systemic environment. Cutting-edge information on stem cells, aging, cancer, and disease make this publication of special interest to basic researchers in the respective fields. Further, it is also intended for medical doctors in the fields of geriatrics, internal medicine, and cancer as it provides a novel understanding of the evolution of tissue dysfunction, diseases and cancer as a consequence of aging.




Skeletal Muscle Repair and Regeneration


Book Description

Since the middle of the last century we have progressively built up a comprehensive descriptive model of the allied mechanisms that maintain our muscles at a size and strength appropriate to the functional demands upon them and that rapidly repair damaged muscles. This volume is an assemblage of the collective experience from the pick of major research groups investigating these aspects of muscle cell biology. It provides up-to-date coverage and presents a broad range of topics.




Advances in Stem Cell Aging


Book Description

Adult stem cells are present in most postnatal tissues of mammals. Tissues with high rates of cell turnover depend on the functional capacity of stem cells for lifelong maintenance of tissue homeostasis. Adult stem cells are also required for the regeneration of tissues in response to injury as in, for example, the regeneration of skeletal muscle. In addition to its function in tissue homeostasis and regeneration, adult stem cells can represent the cell type of origin of various types of cancers including leukemia and colorectal cancer. Stem cells are the most long-lived cells in the proliferative compartment of mammalian tissues. Therefore, stem cells have an increased risk of acquiring mutations that could ultimately lead to the transformation of tissue stem cells.This publication presents the current knowledge in the field of stem cell aging, which was discussed at the Else Kröner-Fresenius Symposium on Advances in Stem Cell Aging in 2011. It will be of special interest to scientists working on stem cell research, aging, regeneration, and cancer as well as physicians and scientists specializing in geriatric medicine, internal medicine, and surgery.




Muscle Homeostasis and Regeneration


Book Description

The book is a collection of original research and review articles addressing the intriguing field of the cellular and molecular players involved in muscle homeostasis and regeneration. One of the most ambitious aspirations of modern medical science is the possibility of regenerating any damaged part of the body, including skeletal muscle. This desire has prompted clinicians and researchers to search for innovative technologies aimed at replacing organs and tissues that are compromised. In this context, the papers, collected in this book, addressing a specific aspects of muscle homeostasis and regeneration under physiopathologic conditions, will help us to better understand the underlying mechanisms of muscle healing and will help to design more appropriate therapeutic approaches to improve muscle regeneration and to counteract muscle diseases.




Muscle Cell and Tissue


Book Description

In order to complete tissue regeneration, various cells (neuronal, skeletal and smooth) interact coordinately with each other. This book, Muscle Cell and Tissue - Current Status of Research Field, deals with current progress and perspectives in a variety of topics on the skeletal and smooth muscle, stem cells, regeneration, disease or therapeutics. Novel applications for cell and tissue engineering including cell therapy, tissue models and disease pathology modeling are introduced. This book also deals with the differentiation/de-differentiation process of vascular smooth muscle cells in health and disease. Furthermore, natural products to reverse metabolic syndromes are descriptively reviewed. These chapters can be interesting for graduate students, teachers, physicians, executives and researchers in the field of molecular biology and regenerative medicine.