Room-Temperature Terahertz Detection and Imaging by Using Strained-Silicon MODFETs


Book Description

This chapter reports on an experimental and theoretical study of Schottky-gated strained-Si modulation-doped field-effect transistors (MODFETs) with different sub-micron gate lengths (100, 250, and 500 nm). Room-temperature detection of terahertz (THz) radiation by the strained-Si MODFETs was performed at two frequencies (0.15 and 0.3 THz). A technology computer-aided design (TCAD) analysis based on a two-dimensional hydrodynamic model (HDM) was used to investigate the transistor response to THz radiation excitation. TCAD simulation was validated through comparison with DC and low-frequency AC measurements. It was found that the photoresponse of the transistors can be improved by applying a constant drain-to-source bias. This enhancement was observed both theoretically and experimentally. The HDM model satisfactorily describes the experimental dependence of the photoresponse on the excitation frequency, the gate bias, and the drain-to-source current bias. The coupling of the incoming THz radiation to the MODFETs was studied at 0.15 and 0.3 THz. Finally, to demonstrate the suitability of strained-Si MODFET for terahertz applications, an image sensor within a pixel-by-pixel terahertz imaging system for the inspection of hidden objects was used.







Infrared and Terahertz Detectors


Book Description

This new edition of Infrared and Terahertz Detectors provides a comprehensive overview of infrared and terahertz detector technology, from fundamental science to materials and fabrication techniques. It includes a new tutorial introduction to technical aspects that are fundamental for basic understanding.




Semiconductor Nanowires


Book Description

Semiconductor nanowires promise to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications covers advanced materials for nanowires, the growth and synthesis of semiconductor nanowires—including methods such as solution growth, MOVPE, MBE, and self-organization. Characterizing the properties of semiconductor nanowires is covered in chapters describing studies using TEM, SPM, and Raman scattering. Applications of semiconductor nanowires are discussed in chapters focusing on solar cells, battery electrodes, sensors, optoelectronics and biology. Explores a selection of advanced materials for semiconductor nanowires Outlines key techniques for the property assessment and characterization of semiconductor nanowires Covers a broad range of applications across a number of fields




Terahertz Antenna Technology for Imaging and Sensing Applications


Book Description

This book covers terahertz antenna technology for imaging and sensing, along with its various applications. The authors discuss the use of terahertz frequency and photoconductive antenna technology for imaging applications, such as biological and bio-medical applications, non-destructive inspection of fabrics and plastics, analysis of hydration levels or detecting the presence of metallic components in samples, and detecting a variety of materials with unique spectral fingerprints in the terahertz frequency range, such as different types of explosives or several compounds used in the fabrication of medicines. Provides a comprehensive review of terahertz source and detector for imaging and sensing; Discusses photoconductive antenna technology for imaging and sensing; Presents modalities for improving the photoconductive dipole antenna performance for imaging and sensing; Explores applications in tomographic imaging, art conservation and the pharmaceutical and aerospace industries.




Terahertz Spectroscopy and Imaging


Book Description

This book presents the state-of-the-art of Terahertz spectroscopy. It is a modern source for a beginners and researcher interested in THz spectroscopy. The basics and physical background of THz spectroscopy and technology are explained, and important applications are described. The book presents the highlights of scientific research in the field of THz science and provides an excellent overview of the field and future directions of research. Over the last decade the field of terahertz spectroscopy has developed into one of the most rapidly growing fields of spectroscopy with large impact across a wide range of scientific disciplines. Due to substantial advances in femtosecond laser technology, terahertz time-domain spectroscopy (THz-TDS) has established itself as the dominant spectroscopic technique for experimental scientists interested in measurements in this frequency range. In solids and liquids terahertz radiation is at resonance with both phonon modes and hydrogen bonding modes which makes it an ideal tool to study the interaction between molecules in a unique way, thus opening a wealth of opportunities for research in physics, chemistry, biology, materials science and pharmaceuticals. This book provides an easy access to scientists, engineers and students alike who want to understand the theory and applications of modern terahertz spectroscopy.




Handbook of Terahertz Technologies


Book Description

Terahertz waves, which lie in the frequency range of 0.1-10 THz, have long been investigated in a few limited fields, such as astronomy, because of a lack of devices for their generation and detection. Several technical breakthroughs made over the last couple of decades now allow us to radiate and detect terahertz waves more easily, which has trigg




Sensing with Terahertz Radiation


Book Description

The purpose of this book is two-fold. First, the various different methods of accessing the THz range are discussed, with a view to convince the reader that there have been qualitative and significant improvements over older, more conventional techniques. The text makes it clear that these improvements enable practical "real-world" applications of THz technology, in a manner which would not have been possible before. Second, the demonstrations and feasibility tests described serve as compelling evidence of the utility of such devices. Due to the unique characteristics of THz radiation and its interaction with materials, these devices have substantial advantages over other competing technologies in a number of different areas.




Advanced Materials for Future Terahertz Devices, Circuits and Systems


Book Description

This book highlights the properties of advanced materials suitable for realizing THz devices, circuits and systems, and processing and fabrication technologies associated with those. It also discusses some measurement techniques exclusively effective for THz regime, newly explored materials and recently developed solid-state devices for efficient generation and detection of THz waves, potentiality of metamaterials for implementing THz passive circuits and bio-sensors, and finally the future of silicon as the base material of THz devices. The book especially focuses on the recent advancements and several research issues related to THz materials and devices; it also discusses theoretical, experimental, established, and validated empirical works on these topics.